Estimating abundance in capture-recapture The importance of model and estimator choice

Matthew Schofield¹, Bill Link², Richard Barker³, and Heloise Pavanato¹

¹ Department of Mathematics and Statistics, University of Otago

² USGS Patuxent Wildlife Research Center

³ Division of Science, University of Otago

- Suppose we discover a coin landed heads y times.
 - \blacktriangleright The coin was flipped a fixed but unknown number of times: N
 - Cannot assume the coin is fair: probability π
 - ▶ The coin is available for us to use
- Question:
 - ► How to estimate N?

- Suppose we discover a coin landed heads y times.
 - \blacktriangleright The coin was flipped a fixed but unknown number of times: N
 - Cannot assume the coin is fair: probability π
 - ▶ The coin is available for us to use
- Question:
 - ► How to estimate N?
- Answer:
 - Use the coin in a secondary experiment: flip M times and see x heads.
 - We'll set M = y.
 - Data x provide information to estimate π .

- Suppose y = 200
 - Model: $y \sim \text{binomial}(N, \pi)$
- Also have M = y = 200, x = 100
 - Model: $x \sim \text{binomial}(y, \pi)$
- Question: what is your estimate of N?

- We now discover the 200 heads arose from P experiments (with the same coin)
- In experiment j the coin flipped N_j times with y_j heads
- Interest is in estimating $\nu = \sum_{j=1}^{P} N_j$
- Suppose the data came from P = 10 experiments

•
$$y_1 = y_2 = \ldots = y_P = 20$$

- Model: $y_j \sim \text{binomial}(N_j, \pi), \ j = 1, \dots, P$
- Recall that $M = \sum_j y_j = 200$, x = 100.
 - Model: $x \sim \text{binomial}(M, \pi)$
- Question: What is your estimate of ν ?

Look in closer

• Start with the pair of (independent) binomials

$$y \sim \operatorname{Bin}(N, \pi), \qquad x \sim \operatorname{Bin}(y, \pi)$$

- N and π are unknown
 - Simplified version of capture-recapture
 - Our thought experiment from the start (with M = y)

Conditional maximum likelihood estimator

$$y \sim \operatorname{Bin}(N, \pi), \qquad x \sim \operatorname{Bin}(y, \pi)$$

- Suppose that we had x = 100 and y = 200
- Condition on y and use x to estimate π

•
$$\tilde{\pi} = \frac{x}{y}$$

- Condition on $\pi=\tilde{\pi}$ and use y to estimate N
 - $\blacktriangleright \quad \tilde{N} = \frac{y}{\tilde{\pi}}$
- $\tilde{\pi} = 0.5$
- $\tilde{N} = 400$
- Does this agree with our answer from earlier?

Maximum likelihood estimator

$$y \sim \operatorname{Bin}(N, \pi), \qquad x \sim \operatorname{Bin}(y, \pi)$$

- Suppose that we had x = 100 and y = 200
- MLE for π depends on y

$$\bullet \ \hat{\pi} = \frac{x+y}{y+\hat{N}}$$

• MLE for N:

•
$$\hat{N} = \operatorname*{arg\,max}_{N} \frac{N!}{(N-y)!} \hat{\pi}^{x+y} (1-\hat{\pi})^{N-x}$$

- $\hat{\pi} = 0.5017$
- $\hat{N} = 398$
- Did anyone have $\hat{N} = 398?$
 - The MLE and conditional estimator differ.

Multiple populations

- Let's suppose we have P populations
 - ▶ In the thought experiment these were multiple experiments
- Extend our model (common π):

$$y_j \sim \operatorname{Bin}(N_j, \pi), \qquad x_j \sim \operatorname{Bin}(y_j, \pi), \qquad j = 1, \dots, P$$

• Interest is in estimation of
$$u = \sum_{j=1}^P N_j$$

Conditional maximum likelihood estimator

$$y_j \sim \operatorname{Bin}(N_j, \pi), \qquad x_j \sim \operatorname{Bin}(y_j, \pi), \qquad j = 1, \dots, P$$

- Suppose that we had P = 10, $x_1 = \ldots = x_P = 10$ and $y_1 = \ldots = y_P = 20$
- Condition on y_1, \ldots, y_P and use x_1, \ldots, x_P to estimate π
 - $\blacktriangleright \quad \tilde{\pi} = \frac{\sum_j x_j}{\sum_j y_j}$
- Condition on $\pi = \tilde{\pi}$ and use y_1, \ldots, y_P to estimate $\nu = \sum_j N_j$
 - $\blacktriangleright \quad \tilde{N} = \frac{\sum_j y_j}{\tilde{\pi}}$
- $\tilde{\pi} = 0.5$
- $\tilde{\nu} = 400$
- Identical to earlier estimator
 - Totals $\sum_j y_j$ and $\sum_j x_j$ are unchanged

Maximum likelihood estimator

$$y_j \sim \operatorname{Bin}(N_j, \pi), \qquad x_j \sim \operatorname{Bin}(y_j, \pi), \qquad j = 1, \dots, P$$

- Suppose that we had P = 10, $x_1 = \ldots = x_P = 10$ and $y_1 = \ldots = y_P = 20$
- MLEs:
 - $\hat{\pi} = 0.513$
 - $\blacktriangleright \ \hat{\nu} = 385$
- Differs from earlier estimator
 - $P = 1: \hat{\nu} = 398$
 - ► $P = 10: \hat{\nu} = 385$
 - ▶ P = 25: $\hat{\nu} = 362$

Model for y

- $y \sim \operatorname{Bin}(N, \pi)$
 - One observation, two unknowns
- Over-specified model!

Model for y

- $y \sim \operatorname{Bin}(N, \pi)$
 - One observation, two unknowns
- Over-specified model!
- It has a unique MLE

$$\blacktriangleright \ \hat{N} = y \text{, } \hat{\pi} = 1$$

Profile log likelihood of π from data y

• $y \sim \operatorname{Bin}(N, \pi)$ is providing weak information about π

Profile log likelihood of π from data y_1, \ldots, y_P

• y provides increasing information about $\overset{\pi}{\pi}$ as P increases

Poisson models

- An alternate model: Poisson rather than binomial
 - $N \sim \mathsf{Poisson}(\lambda)$
 - $\blacktriangleright \ {\sf Marginalize \ over \ } N$
- The MLE from Poisson model is equivalent to conditional estimator (Cormack)
- Result extends to multiple populations P

What about Bayes?

- The motivation was inconsistency between MLE and Bayes estimates
 - MRDS example
- Prior choice is important
 - We consider scale prior for $N:\;f(N)\propto N^{-1}$ (Link)
- Identical posteriors for binomial and Poisson models
 - ► For specific prior choice

Beyond the pair of binomials

- · Results generalize to more realistic mark-recapture models
 - The term $y \sim \operatorname{Bin}(N, \pi)$ essentially remains unchanged
 - More complex model for x
- Simulate and fit closed population model M_t
 - K = 5 sampling periods
 - Simulation 1:
 - Vary $P=1, 10, 50, 100 \text{ and } \nu = 500, 1000, 2000$
 - Simulation 2: consider $\kappa = N_1 = \ldots = N_P$
 - Vary P=10, 50, 100 and $\kappa=5, 10, 25, 50$
- Fixed N_1, \ldots, N_P
 - ▶ The true model is multinomial/binomial

Simulation 1

Simulation 2

Estimating abundance in capture-recapture

Discussion

- This work was motivated by a real example
 - ▶ Estimator sensitivity that was unexpectedly 'extreme' for a moderately sized sample
- What I haven't talked about:
 - ▶ What is known about asymptotic behaviour of these estimators (e.g. Fewster & Jupp)
 - Use notions of ancillary to help explain results
 - Frame the problem in terms of nuisance parameters
 - Connections to REML in mixed effect models
- Summar:
 - ▶ MLE estimation performs poorly (as *P* increases)
 - Important to understand estimator behaviour in finite samples