Estimating abundance in capture-recapture

The importance of model and estimator choice

Matthew Schofield ${ }^{1}$, Bill Link ${ }^{2}$, Richard Barker ${ }^{3}$, and Heloise Pavanato ${ }^{1}$
${ }^{1}$ Department of Mathematics and Statistics, University of Otago
${ }^{2}$ USGS Patuxent Wildlife Research Center
${ }^{3}$ Division of Science, University of Otago

Thought experiment

- Suppose we discover a coin landed heads y times.
- The coin was flipped a fixed but unknown number of times: N
- Cannot assume the coin is fair: probability π
- The coin is available for us to use
- Question:
- How to estimate N ?

Thought experiment

- Suppose we discover a coin landed heads y times.
- The coin was flipped a fixed but unknown number of times: N
- Cannot assume the coin is fair: probability π
- The coin is available for us to use
- Question:
- How to estimate N ?
- Answer:
- Use the coin in a secondary experiment: flip M times and see x heads.
- We'll set $M=y$.
- Data x provide information to estimate π.

Thought experiment

- Suppose $y=200$
- Model: $y \sim \operatorname{binomial}(N, \pi)$
- Also have $M=y=200, x=100$
- Model: $x \sim \operatorname{binomial}(y, \pi)$
- Question: what is your estimate of N ?

Thought experiment

- We now discover the 200 heads arose from P experiments (with the same coin)
- In experiment j the coin flipped N_{j} times with y_{j} heads
- Interest is in estimating $\nu=\sum_{j=1}^{P} N_{j}$
- Suppose the data came from $P=10$ experiments
- $y_{1}=y_{2}=\ldots=y_{P}=20$
- Model: $y_{j} \sim \operatorname{binomial}\left(N_{j}, \pi\right), \quad j=1, \ldots, P$
- Recall that $M=\sum_{j} y_{j}=200, x=100$.
- Model: $x \sim \operatorname{binomial}(M, \pi)$
- Question: What is your estimate of ν ?

Look in closer

- Start with the pair of (independent) binomials

$$
y \sim \operatorname{Bin}(N, \pi), \quad x \sim \operatorname{Bin}(y, \pi)
$$

- N and π are unknown
- Simplified version of capture-recapture
- Our thought experiment from the start (with $M=y$)

Conditional maximum likelihood estimator

$$
y \sim \operatorname{Bin}(N, \pi), \quad x \sim \operatorname{Bin}(y, \pi)
$$

- Suppose that we had $x=100$ and $y=200$
- Condition on y and use x to estimate π
- $\tilde{\pi}=\frac{x}{y}$
- Condition on $\pi=\tilde{\pi}$ and use y to estimate N
- $\tilde{N}=\frac{y}{\pi}$
- $\tilde{\pi}=0.5$
- $\tilde{N}=400$
- Does this agree with our answer from earlier?

Maximum likelihood estimator

$$
y \sim \operatorname{Bin}(N, \pi), \quad x \sim \operatorname{Bin}(y, \pi)
$$

- Suppose that we had $x=100$ and $y=200$
- MLE for π depends on y
- $\hat{\pi}=\frac{x+y}{y+\hat{N}}$
- MLE for N :
- $\hat{N}=\underset{N}{\arg \max } \frac{N!}{(N-y)!} \hat{\pi}^{x+y}(1-\hat{\pi})^{N-x}$
- $\hat{\pi}=0.5017$
- $\hat{N}=398$
- Did anyone have $\hat{N}=398$?
- The MLE and conditional estimator differ.

Multiple populations

- Let's suppose we have P populations
- In the thought experiment these were multiple experiments
- Extend our model (common π):

$$
y_{j} \sim \operatorname{Bin}\left(N_{j}, \pi\right), \quad x_{j} \sim \operatorname{Bin}\left(y_{j}, \pi\right), \quad j=1, \ldots, P
$$

- Interest is in estimation of $\nu=\sum_{j=1}^{P} N_{j}$

Conditional maximum likelihood estimator

$$
y_{j} \sim \operatorname{Bin}\left(N_{j}, \pi\right), \quad x_{j} \sim \operatorname{Bin}\left(y_{j}, \pi\right), \quad j=1, \ldots, P
$$

- Suppose that we had $P=10, x_{1}=\ldots=x_{P}=10$ and $y_{1}=\ldots=y_{P}=20$
- Condition on y_{1}, \ldots, y_{P} and use x_{1}, \ldots, x_{P} to estimate π
- $\tilde{\pi}=\frac{\sum_{j} x_{j}}{\sum_{j} y_{j}}$
- Condition on $\pi=\tilde{\pi}$ and use y_{1}, \ldots, y_{P} to estimate $\nu=\sum_{j} N_{j}$
- $\tilde{N}=\frac{\sum_{j} y_{j}}{\tilde{\pi}}$
- $\tilde{\pi}=0.5$
- $\tilde{\nu}=400$
- Identical to earlier estimator
- Totals $\sum_{j} y_{j}$ and $\sum_{j} x_{j}$ are unchanged

Maximum likelihood estimator

$$
y_{j} \sim \operatorname{Bin}\left(N_{j}, \pi\right), \quad x_{j} \sim \operatorname{Bin}\left(y_{j}, \pi\right), \quad j=1, \ldots, P
$$

- Suppose that we had $P=10, x_{1}=\ldots=x_{P}=10$ and $y_{1}=\ldots=y_{P}=20$
- MLEs:
- $\hat{\pi}=0.513$
- $\hat{\nu}=385$
- Differs from earlier estimator
- $P=1: \hat{\nu}=398$
- $P=10: \hat{\nu}=385$
- $P=25: \hat{\nu}=362$

Model for y

- $y \sim \operatorname{Bin}(N, \pi)$
- One observation, two unknowns
- Over-specified model!

Model for y

- $y \sim \operatorname{Bin}(N, \pi)$
- One observation, two unknowns
- Over-specified model!
- It has a unique MLE
- $\hat{N}=y, \hat{\pi}=1$

Profile log likelihood of π from data y

- $y \sim \operatorname{Bin}(N, \pi)$ is providing weak information about π

Profile log likelihood of π from data y_{1}, \ldots, y_{P}

- Let $\sum_{j=1}^{P} y_{j}=1000$ and vary number of populations P (we set $y_{1}=\ldots=y_{P}$)

- y provides increasing information about π as P increases

Poisson models

- An alternate model: Poisson rather than binomial
- $N \sim \operatorname{Poisson}(\lambda)$
- Marginalize over N
- The MLE from Poisson model is equivalent to conditional estimator (Cormack)
- Result extends to multiple populations P

What about Bayes?

- The motivation was inconsistency between MLE and Bayes estimates
- MRDS example
- Prior choice is important
- We consider scale prior for $N: f(N) \propto N^{-1}$ (Link)
- Identical posteriors for binomial and Poisson models
- For specific prior choice

Beyond the pair of binomials

- Results generalize to more realistic mark-recapture models
- The term $y \sim \operatorname{Bin}(N, \pi)$ essentially remains unchanged
- More complex model for x
- Simulate and fit closed population model M_{t}
- $K=5$ sampling periods
- Simulation 1 :
- Vary $P=1,10,50,100$ and $\nu=500,1000,2000$
- Simulation 2: consider $\kappa=N_{1}=\ldots=N_{P}$
- Vary $P=10,50,100$ and $\kappa=5,10,25,50$
- Fixed N_{1}, \ldots, N_{P}
- The true model is multinomial/binomial

Simulation 1

Simulation 2

Discussion

- This work was motivated by a real example
- Estimator sensitivity that was unexpectedly 'extreme' for a moderately sized sample
- What I haven't talked about:
- What is known about asymptotic behaviour of these estimators (e.g. Fewster \& Jupp)
- Use notions of ancillary to help explain results
- Frame the problem in terms of nuisance parameters
- Connections to REML in mixed effect models
- Summar:
- MLE estimation performs poorly (as P increases)
- Important to understand estimator behaviour in finite samples

