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Motivations

♦ Australian Grain Technologies (AGT)
is Australia’s largest plant breeding
company, and the market leader in
wheat genetics.

♦ Their work is driven by developing new field crop varieties that are more productive, better
quality and cost less to grow.

♦ Millions of potential new crop varieties tested each year; but only a very special few make
it to release.

♦ As a plant breeding research company, AGT focuses on innovation, and is a fast adopter
of new technologies and statistical methods.
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Motivations

Plant breeding objectives

♦ Yield is a key trait that is routinely examined in plant breeding programs via field testing.
✧ possesses a complex genetic architecture and often exhibits low heritability.
✧ being influenced by many sources of non-genetic variation.
✧ possesses large variety by environment interaction (VEI ), representing the differential

performance of varieties in response to a change in environment†.

♦ Lines enter the yield testing phase at stage 1 (S1) and progress through to later stages
towards eventual release as a commercial cultivar after approximately 8 years.

♦ Aim: at each stage of testing, accurately select the best lines to progress to the next stage.

†an “environment” is defined to be the combination of a geographic location and year of the trial(s) present in the
data-set.
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What do we do and why

Aim: making selections with the presence of VEI

To address all these challenges and improve selection accuracy (Smith et al., 2021), we:

♦ generate multi-environment trial (MET) data.
✧ a series of designed selection experiments conducted across a range of targeted geographic

locations and typically over several years.

♦ adopt a fully efficient one stage factor analytic linear mixed model (FALMM) analysis
approach:

✧ allows a separate FA variance structure for the variety effects in individual environments (VE
effects) (see Smith et al. (2005), Smith et al. (2021) and Gogel et al. (2018), for example).

✧ has the ability to process imbalanced data and
✧ to incorporate genetic relatedness through ancestral (pedigree) information or genomic

(marker) data.
✧ appropriate modelling of all sources of variation, including spatial correlations.
✧ provides more accurate predictions of variety effects across environments.
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Motivating example

Task: Selecting the best subset of 20-30 lines from 144 lines tested in stage 3 (S3), 2022.

♦ In 2022, these 144 lines were only tested in 12 trials.

♦ For the purpose of this selection, the MET data-set comprised:

✧ a series of 103 trials over the period 2019-2022, which covered the full selection history of
these 144 S3 lines.

✧ 38 environments across 14 locations in South Australia, Western Australia and Victoria.
✧ a total of 9399 varieties and 40,514 plot yields.
✧ Pedigree information was available for all varieties, with 11,786 records including 2,387 for

parents.
✧ The numerator relationship matrix (NRM) was formed using the pedicure package of Butler

(2019) in R (R Core Team, 2022).
✧ The variety by environment “fill-in”† is 8.5%.

†the number of V×E combinations present in the data expressed as a percentage of the number of possible V×E
combinations.
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Motivating example

Trial layouts

♦ In our context, a field trial is a physical block of plots onto which a valid experimental
design (with replication and randomization) is imposed.

✧ 82 trials were partially replicated (Cullis et al., 2006), in which a number of varieties were
tested on a single plot each without replication; 21 trials were fully replicated with 2
replicates for each variety.

♦ Each trial comprised a two-dimensional arrangement of plots indexed by rows and
columns. Blocking was employed across all trials in the column direction.

✧ The smallest trial comprised 192 plots arranged as 8 rows by 24 columns; the largest
comprised 768 plots arranged as 32 rows by 24 columns. The number of varieties per trial
ranged from 144 to 519.

♦ Each environment involved either a single field trial or multiple trials, called co-located
trials (Smith et al., 2021). These arose due to management challenges and the conduct of
trials of different stages.

✧ 17 environments had co-located trials and 21 had a single trial in each environment.
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Single step MET analysis using FALMM in DWReml

Fator analytic models for VE effects

♦ The use of pedigree information allows for the partition of VE effects into additive and
non-additive effects. Therefore,

ug = ua + ue .

♦ Following Smith et al. (2023 - In-prep), separate FA models were fitted for each set of
these effects.

♦ Each set of these effects can be partitioned into common VE ( CVE ) effects and the lack
of fit effects, also known as specific VE (SVE) effects.

ua = (Λa ⊗ Im)fa + δa = βa + δa

ue = (Λe ⊗ Im)fe + δe = βe + δe .

♦ In FA models, it is assumed that

var

(
fa
fe

)
=

[
Da ⊗ A 0

0 De ⊗ Im

]
var

(
δa

δe

)
=

[
Ψa ⊗ A 0

0 Ψe ⊗ Im

]
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Single step MET analysis using FALMM in DWReml

FA model syntax in DWReml

Therefore, the variance matrices for the CVE effects are given by

var

(
βa

βe

)
=

[
ΛaDaΛ

⊺
a ⊗ A 0

0 ΛeDeΛ
⊺
e ⊗ Im

]

fa1fa1.dwr <- dwreml(yield ~ Env,
random = ~ rr(Env,1):vm(Variety, A.inv) + cut(~vm(Variety, A.inv)|Env, rds=“Acut”) +

rr(Env,1):ide(Variety, A.inv) + cut(~ide(Variety, A.inv)|Env, rds=“Acut”) +
at(Env, env.coloc):Covblk + at(Env, env.coloc):Covblk:ColRep +
at(Env, env.coloc):Covblk:Column + at(Env, env.coloc):Covblk:Row +
at(Env, env.single):ColRep +
at(Env, env.single):Column + at(Env, env.single):Row,

data = df, na.action = na.method(x='include'),
residual = ~ dsum(~ar1(Column):ar1(Row) | Covblk | Env))
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Single step MET analysis using FALMM in DWReml

FA model syntax in DWReml

Variance Models Terms fitted in DWReml

Genetic
effects

βa ΛaDaΛ
⊺
a ⊗ A rr(Env,1):vm(Variety, A.inv)

δa ⊕38
j=1ψajAj cut(∼vm(Variety, A.inv)|Env, rds=“Acut")

βe ΛeDeΛ
⊺
e ⊗ Im rr(Env,1):ide(Variety, A.inv)

δe ⊕38
j=1ψej Imj cut(∼ide(Variety, A.inv)|Env, rds=“Acut")

Peripheral
effects

⊕38
j=1Gpj

at(Env, env.single):ColRep

at(Env, env.single):Column

at(Env, env.single):Row

at(Env, env.coloc):Covblk

at(Env, env.coloc):Covblk:ColRep

at(Env, env.coloc):Covblk:Column

at(Env, env.coloc):Covblk:Row

Residuals ⊕38
j=1Rej dsum(∼ar1(Column):ar1(Row) | Covblk | Env)
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What we have achieved



Results and interaction classes

Table 1: Summary of model fits. Likelihood ratio chi-square; Akaike information criterion (AIC); percentage of genetic
variance accounted for by ka additive factors; by ke = 1 non-additive factor and by all k = ka + ke factors.

Models LR chi-square df AIC Genetic variance accounted for (%)

Additive Non-additive Total

DIAG (Ind.) 0† - 14958 - - -
DIAG-DIAG 11326 38 3708 80.6 19.4 -
FA1FA1 3860 76 0‡ 60.4 59.8 60.3
FA2FA1 246 37 -172 78.8 41.3 74.5
FA3FA1 142 36 -243 82.8 43.1 78.3
FA4FA1 115 35 -287 87.0 43.7 82.2

†log-likelihood for DIAG (Ind.) is 23352.
‡AIC for FA1FA1 is -61152.94, used as the subtrahend for differences.
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Results and interaction classes

Task: Selecting the best subset of 20-30 lines from 144 stage 3 (S3) test lines in 2022.

♦ Smith et al. (2021) addressed the issue of summarising variety performance in the
presence of interaction by using “interaction classes” (iClasses).

✧ The factor loadings represent the latent environmental covariates that are driving the VEI.
✧ The estimated loadings for factor r of environment j can only be positive (“p”) or negative

(“n”).
✧ Groups of environments formed on the basis of the signs of their estimated loadings in

individual factors discriminate varieties with differential patterns of VEI.
✧ The maximum number of possible iClasses is 2k .

♦ Following Smith et al. (2021), iClasses were formed for each FA model by
✧ firstly, ordering the factors by the percentage variance accounted for;
✧ then pasting the values (“p” or “n”) of the rotated REML estimates of the loadings of each

factor.
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Results and interaction classes

Table 2: Rotated REML estimates of loadings (×1000) for each factor in FA4FA1 model; iClasses
based on all five factors (iClass5) and only the first four factors (iClass4). Numbers within brackets
show the percentage of genetic variance accounted for by the individual factors.

load:add1 (51%) load:add2 (18.8%) load:ide1 (4.9%) load:add3 (4.1%) load:add4 (3.4%) iClass5 iClass4

Env26 82 -93 -4 -235 -45 pnnnn pnnn

Env1 85 -18 -162 146 -183 pnnpn pnnp

Env9 151 -65 279 -73 156 pnpnp pnpn

Env5 53 -69 67 97 -236 pnppn pnpp

Env28 101 32 -32 -205 79 ppnnp ppnn

Env6 236 202 -135 27 53 ppnpp ppnp

Env14 23 168 64 -98 -181 pppnn pppn

Env38 264 406 45 97 153 ppppp pppp
...

...
...

...
...

...
...

...
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Results and interaction classes

Task: Selecting the best subset of 20-30 lines from 144 stage 3 (S3) test lines in 2022.

♦ In each iClass,
✧ check the unique numbers of S3 lines present.
✧ obtain the rankings of lines using their mean predicted total CVE effects .

♦ Select the best 40 (total) by proportional sampling based on iClass sizes.

Table 3: Within each iClass, number of S3 lines present; number of environments; number of S3 lines
selected.

pnnn pnpp pnpn pnpp ppnn ppnp pppn pppp

number of S3 lines present 6 7 144 135 144 144 144 144
number of environments 1 3 12 10 2 4 2 4
number of S3 lines selected 0 0 14 12 2 5 2 5
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Results and interaction classes

Task: Selecting the best subset of 20-30 lines from 144 stage 3 (S3) test lines in 2022.

Table 4: Numbers of unique lines selected from each model by proportional sampling across iClasses;
numbers of unique lines selected in common between models.

FA1FA1 FA2FA1 FA3FA1 FA4FA1 usable iClasses

FA1FA1 24 2
FA2FA1 19 24 4
FA3FA1 19 21 24 6
FA4FA1 19 22 22 24 6
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Results and interaction classes
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Figure 1: Interaction plot of iClassOP (t/ha) for six check varieties. The number of environments in each iClass and
their associated mean yield (t/ha) is given along the top axis.
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Take home messages

♦ Demonstrated how we implemented a fully efficient single step factor analytic linear mixed
model approach in the MET analysis in DWReml.

♦ iClass approach provides meaningful summaries for VE effects with the presence of VEI. It
could be used not only to select the best varieties within each iClass but also match
varieties in terms of their patterns of VEI across iClasses.

♦ Innovation is driven by the purposes.

A. Smith, A. Norman, D. Butler and B. Cullis. Plant vari-
ety selection using interaction classes derived from Factor
Analytic Linear Mixed Models: models with information
on genetic relatedness. In-prep, 2023.
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