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Motivation

• Investigate disease (Phytophthora root rot - PRR) resistance in Australian

chickpeas

• Generally done through field experiments as these most similarly match conditions

Australian chickpea growers experience

• However there are constraints to manage:

• Difficult to control disease pressure in field experiments

• Difficult to directly measure/quantify disease presence

• Field experiments are expensive, labour intensive and time consuming

• These factors lead to a complex statistical analysis
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Scenario

• This investigation involves data from two experiments - one field experiment and

one hydroponic experiment

• Both experiments assess a similar set of genetic material (varieties) under

artificially induced/amplified PRR pressure

• Researcher would like to assess the agreement between PRR resistance assessment

in the hydroponic and field experiments

• Hydroponics experiments provide high throughput low cost alternatives to field

experiments
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Scenario - Hydroponic

• In the hydroponic experiment counts of total and chlorotic leaves per plant are

recorded

• Along with terms associated with the plot structure; Tank, Racks, Rows and

Columns

Tank Rack HRange HRow Variety TotalLeaf DisLeaf

1 1 1 1 A 6 2

1 1 2 1 B 5 3

1 1 3 1 C

1 1 4 1 D 11 6

1 1 5 1 F 13 9

1 1 6 1 A 15 7
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Scenario - Field

• In the field experiment dead and chlorotic plants along with total plants at risk per plot

are recorded at three different time points

• This in itself introduces complexities however following the methods of Bartlett (1978),

expected lifetimes have been calculated for each plot (Amalraj et al., 2019)

• Terms associated with the field experiment plot structure are also recorded; Rows and

Columns

FCol FRow Variety Risk1 Dead1 Risk2 Dead2 Risk3 Dead3 ExpectedLife

1 1 A 16 0 16 12 4 15 1.57

1 2 B 16 0 16 0 16 0 9.39

1 3 C 16 0 16 0 16 2 4.01

1 4 D 10 0 10 7 3 9 1.75

1 5 E 19 0 19 2 17 7 2.98

1 6 A 16 0 16 4 12 7 2.87
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Statistics of the Problem

• We would like a statistical model which:

• Reflects the plot structure of each experiment

• Accurately captures the underlying distribution of each measured trait

• Provides a reliable estimate of the genetic correlation between experiments

• We choose a bivariate generalised linear mixed model (GLMM) using ASReml-R
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Statistics of the Problem

• ASReml-R implements penalised quasilikelihood (PQL) estimation (Breslow &

Clayton, 1993) which allows us to fit such a model following some manipulation of

the dataframe

• Currently the only method to fit multivariate GLMMs in ASReml-R is through

specifying equal design matrices among the traits (experiments)

• This creates complexities in this scenario, as the two experiments have different

sets of terms associated with their plot structures

• To overcome this the two data frames are merged by variety in a non-unique way
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Statistics of the Problem

WPlot Variety FCol FRow Tank Rack HRange HRow DL* TL* EL*

1 A 1 1 1 1 1 1 2 6 1.57

2 B 1 2 1 1 2 1 3 5 9.39

3 C 1 3 1 1 3 1 4.01

4 D 1 4 1 1 4 1 6 11 1.75

5 E 1 5 2.98

6 F 1 1 5 1 9 13

7 A 1 6 1 1 6 1 7 15 2.87
*DL = Number of chlorotic leaves (hydroponic), *TL = Number of total leaves (hydroponic) and *EL = Expected lifetime (field)

• WPlot arbitrarily joins field and hydroponic observations by common varieties,

however as evident in WPlot 5 and 6 not all field and hydroponic observations can

be matched
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Model

• As previously discussed, we have data from two experiments y = (yᵀH , y
ᵀ
F )ᵀ:

• yH = (yH1 , . . . , yHnH
)ᵀ from the hydroponic experiment which we assume follows a

binomial distribution

• yF = (yF1 , . . . , yFnF
)ᵀ from the field experiment which we assume follows a normal

distribution

• We would also like to include random effects u = (uᵀ
g ,u

ᵀ
pH ,u

ᵀ
pF )ᵀ which are either

shared genetic effects ug or non-shared peripheral effects upH and upF , for the

hydroponic and field experiments respectively

• We can then write the distributions yH |u and yF |u conditional on the random

effects u with associated probability density functions (PDF) fYH |U and fYF |U
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Model - Hydroponic Conditional Distribution

E (yHi
|u) = µHi

g(µHi
) = ηHi

= xᵀHi
τ + zᵀHi

u

V (yHi
|u) = φHµHi

(1− µHi

nTLi
)

• for i = 1, . . . , nH where g() is the logit link function

• xHi
and zHi

are indicator/covariate vectors of length cX and cZ relating to the

fixed (τ ) and random (u) effects for the ith observation in the hydroponic

experiment

• φH represents the dispersion parameter and nTLi are the binomial totals for the

ith observation in the hydroponic experiment



Model - Field Conditional Distribution

E (yFi
|u) = ηFi

= xᵀFi
τ + zᵀFi

u

V (yFi
|u) = σ2

F

• for i = 1, . . . , nF

• xFi
and zFi

are indicator/covariate vectors of length cX and cZ relating to the

fixed (τ ) and random (u) effects for the ith observation in the field experiment

• σ2
F is the field residual variance



Random Effects

• We assume the random effects follow a multivariate normal distribution such that:

 ug

upH

upF

 ∼ N


0

0

0

 ,
Gg 0 0

0 GpH 0

0 0 GpH




• Or more generally u ∼ N(0,G) with associated PDF fU

• For convenience we allow κ to contain all parameters in Gg , GpH and GpF along

with φH and σ2
F
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Likelihood

• Our interest then lies in the log-likelihood, which following Collins (2008) can be

written as:

`(τ ,κ; y) = `(τ ,κ; yH) + `(τ ,κ; yF )

= log

(∫
fYH |U fUdu

)
+ log

(∫
fYF |U fUdu

)
• The first term of which is not analytically tractable and hence requires an

alternative to classical likelihood inference - therefore PQL is used to approximate

the likelihood (Collins, 2008)
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Model - Variance Structure of Random Effects

• The key component of this model is the variance model Gg for the set of genetic effects ug

• The total genetic effect are partitioned such that ug = ua + ue into an additive (ua) and

non-additive component (ue)[
ua

ue

]
∼ N

([
0

0

]
,

[
Gga 0

0 Gge

])
• Here Gga = Σa ⊗K and Gge = Σe ⊗ Icg where K is a (cg × cg ) known genomic

relationship matrix (GRM) formed via marker scores

• Where Σa =

[
σaH σaHF

σaHF
σaF

]
and Σe =

[
σeH σeHF
σeHF

σeF

]
is known as an unstructured

parameterisation

• In the case of the non-genetic effects, we specify GpH and GpF as block diagonal matrices
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The Model - Genetic Effects

• Computationally, estimating the parameters in the unstructured formulation may

lead to estimates outside the parameter space (Meyer, 2023)

• We use a slightly different parameterisation of the genetic variance matrices:

Σa =

[
λ2
aH

λaHλaF
λaHλaF λ2

aF
+ ψaF

]
and Σe =

[
λ2
eH

λeHλeF
λeHλeF λ2

eF
+ ψeF

]
• This parameterisation is known as “reduced rank + diag” and is convenient as

estimates of the λij , i = a, e, j = H,F cannot go outside the parameter space

unlike the “σ” parameters in the unstructured parameterisation
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Model - Recap

• Due to the non-Gaussian nature of the response recorded in the hydroponic

experiment we use PQL, an approximate likelihood method as the likelihood

analytically intractable

• For the genetic effects, which are our main interest, we specify a variance

structure which allows for covariance between experiments



Model - Recap

• Due to the non-Gaussian nature of the response recorded in the hydroponic

experiment we use PQL, an approximate likelihood method as the likelihood

analytically intractable

• For the genetic effects, which are our main interest, we specify a variance

structure which allows for covariance between experiments



Model - Recap

• Due to the non-Gaussian nature of the response recorded in the hydroponic

experiment we use PQL, an approximate likelihood method as the likelihood

analytically intractable

• For the genetic effects, which are our main interest, we specify a variance

structure which allows for covariance between experiments



Model - ASReml

asreml(fixed = cbind(DL,EL) ~ trait + trait:VarietyDrop,

random =~ rr(trait):vm(Variety, K) + at(trait,"EL"):vm(Variety, K) +

rr(trait):ide(Variety) + at(trait,"EL"):ide(Variety) +

at(trait, "DL"):Tank + at(trait, "DL"):Tank:Rack +

at(trait, "DL"):Tank:Rack:HRow + at(trait, "DL"):Tank:Rack:HRange +

at(trait, "EL"):FRow + at(trait, "EL"):FCol,

residual = ~id(WPlot):diag(trait),

data = df,

family = list(asr_binomial(total = "TL"), asr_gaussian()),

na.action = na.method(x="include",y="include"))



Results

• PQL estimate of total genetic correlation between the two experiments of -0.476

• Negative correlations are expected, as for the field experiment higher expected

lifetime values indicate higher disease resistance, whereas for the hydroponic

experiment lower leaf chlorosis incidence values indicate higher disease resistance

• The researcher would also like a confidence interval on this estimate

• To do so while also assessing potential bias in the PQL estimates, a known issue

impacting parameter estimation (Breslow & Lin, 1995) we implement parametric

bootstrapping
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Parametric Bootstrapping - Applied

• A total of 2000 bootstrap simulations were generated, of these 726 were omitted

due to non-convergence

• This was based on a criteria for parameter convergence;

∆norm =

√√√√Σi (θ̂
(t)
i − θ̂

(t−1)
i )2

Σi θ̂
(t)2

i

• i = 1, . . . , p where p is the number of parameters, θ̂
(j)
i is the estimate of the ith

parameter at the jth iteration with t being the final iteration

• After 50 iterations simulations where ∆norm > 0.001 were excluded
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• The remaining 1274 simulations resulting in an average total genetic correlation of

-0.54 with an associated 95% confidence interval (-0.70,-0.36)

0

25

50

75

−0.6 −0.4 −0.2
Total Genetic Correlation

C
ou

nt

95% CI
Bootstrap Mean
Observed



Parametric Bootstrapping - Applied

• The remaining 1274 simulations resulting in an average total genetic correlation of

-0.54 with an associated 95% confidence interval (-0.70,-0.36)

0

25

50

75

−0.6 −0.4 −0.2
Total Genetic Correlation

C
ou

nt

95% CI
Bootstrap Mean
Observed



Parametric Bootstrapping - Applied

• The remaining 1274 simulations resulting in an average total genetic correlation of

-0.54 with an associated 95% confidence interval (-0.70,-0.36)

0

25

50

75

−0.6 −0.4 −0.2
Total Genetic Correlation

C
ou

nt
95% CI
Bootstrap Mean
Observed



Parametric Bootstrapping - Sampling Distribution

Parameter Obs BootMean

σ2
Tank 0.082 0.077

σ2
Rack 0.022 0.022

σ2
FRow 0.000 0.014

σ2
FCol 0.013 0.025

σ2
HRange 0.038 0.035

σ2
HRow 0.092 0.088

ψaF 0.000 0.023

ψeF 2.458 1.617

λaH 0.151 0.335

λaF -1.074 -0.032

λeH 0.376 0.997

λeF -0.591 -0.874

φH 1.095 0.965

σ2
F 3.593 3.571

σ2
j , j = Tank, Rack, FRow, FCol, HRange and HRow are the variance components associated with the peripheral random effects, ψaF

, ψeF
, λaH

,

λaF
, λeH

and λeF
are the genetic parameters and φH and σ2

F are the hydroponic dispersion and field residual variance parameter respectively



Conclusion

• This research question posed a range of complexities to address in order to

provide a valid statistical analysis

• The resulting analysis gave a quantification of the level of agreement between

PRR resistance for the two experiments

• Parametric bootstrapping provided assessment of parameter estimation bias and

indicated the associated 95% bootstrap CI for the total genetic correlation does

not contain 0
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