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Dear Mr. Badly,

Could you please implement the Bloggs Technique in

your `spatstat' package?

See attached paper by Bloggs (2015)

Yours sincerely,

A. User

PS. Please do it soon because my advisor wants the

results on his desk on Monday morning
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1. Introduction

Receiver Operating Characteristic (ROC) curve

• measures the performance of a classi�er/test

• has recently been applied to spatial data
to assess Species Distribution Models
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Claims in the literature

The ROC for a Species Distribution Model is claimed to be

 �a measure of goodness-of-�t of the model�



 �a measure of predictive power of the model�

À

 �useful for model selection�

À

 �useful for variable selection�
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Aims:

• clarify the meaning of ROC for spatial data

• identify strengths & weaknesses

• propose new extensions

(Skating over technicalities)
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2. ROC curves

Assume there are two populations

• Positive (�infected�, �a�ected�)

• Negative (�not infected�, �not a�ected�)

To determine the status of an individual, we can measure a
quantity S (�discriminant�, �clinical indicator�)

Large values of S suggest that the individual is positive.

predicted status=
{
Positive if S > t
Negative if S ≤ t

where t is a threshold (that needs to be chosen).
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The ROC curve is a plot of the probability of a true positive

P(S > t |Positive)

against the probability of a false positive

P(S > t |Negative)

for all possible values of threshold t.
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Other ways to say it:

Ï The ROC curve is a plot of power against size
(or sensitivity against �1− speci�city�)
for the hypothesis test of

H0 :Negative
vs

H1 :Positive

which rejects H0 when S > t.

Ï The ROC curve is a P�P plot comparing the distributions of
the variable −S in the Positive and Negative populations.
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Area Under the Curve (AUC)
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AUC = 1: perfect discrimination

AUC = 1
2 : no discrimination
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Fun fact:

AUC =P{S(X )> S(Y )}

where X ,Y are independent, randomly selected members of the
Positive and Negative populations respectively.

If the two distributions are identical, then the ROC curve is the
diagonal line, and AUC = 1/2.
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Krzanowski & Hand (2009)
ROC Curves for Continuous Data

Chapman and Hall/CRC
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3. Spatial data

Ï spatial point patterns

Ï spatial presence-absence data
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Spatial point pattern

Rainforest trees � mapped locations
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Spatial presence-absence data

Rainforest trees � presence or absence in each 10×10 metre pixel
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Spatial covariates

Rainforest survey � covariates

Terrain elevation Terrain slope
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Spatial covariates

Rainforest survey � covariates

Terrain elevation Terrain slope
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Geological survey

+ gold deposit
� fault line
␣ greenstone
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4. ROC for spatial model

Current practice:

Ï Fit a statistical model to spatial presence-absence data

Ï Calculate the predicted probability of presence in each pixel

Ï Calculate the ROC curve using
Positive `population' = pixels with observed presence
Negative `population' = pixels with observed absence
discriminant = predicted probability of presence
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Franklin (2009)
Mapping Species Distributions: Spatial Inference and Prediction

Cambridge University Press
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For each pixel j , let

xj = value of covariate at j (possibly vector)

yj =
{
1 if trees are present
0 if trees are absent

pj = P(Yj = 1)

= E[Yj ]

Baddeley ROC curves for spatial point patterns and presence-absence data



yj = presence/absence indicator
xj = covariate
pj =P(Yj = 1)

Ï Formulate a model for pj as a function of xj .

Ï Fit the model and compute p̂j .
Ï For each possible threshold t, compute

• estimated True Positive rate

TP(t)=
∑

j yj 1{p̂j > t}∑
j yj

• estimated False Positive rate

FP(t)=
∑

j (1−yj )1{p̂j > t}∑
j (1−yj )

Ï Plot TP(t) against FP(t) for all t to produce the ROC curve.
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Geological survey

+ gold deposit
� fault line
␣ greenstone
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Model: logistic regression: at pixel j ,

log
pj

1−pj
=β0+β1dj +β2gj

where dj = distance to nearest fault, gj = greenstone indicator
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Model: logistic regression:
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Model: logistic regression:

log
pj

1−pj
=β0+β1dj +β2gj

where dj = distance to nearest fault, gj = greenstone indicator
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Interpretation:

• Result is �good�

• When the survey region is divided into regions of high and low
probability of presence of gold (predicted by the �tted model),

✓ the subdivision is e�cient: 10% of the survey area contains
82% of the known gold deposits.

✓ the model is useful : pixels with higher predicted probability of
presence of gold are indeed much more likely to contain gold
deposits
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Rainforest
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Model: logistic regression

log
pj

1−pj
=β0+β1 ej +β2 sj

where ej = elevation, sj = slope at pixel j
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Model: logistic regression
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AUC = 0.61
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Interpretation:

Ï Result is �not so good�

Ï Model does not e�ciently segregate the rainforest into areas of
high and low density of trees
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✓ROC was a useful diagnostic in the two examples.
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Weaknesses

(a) ROC depends on study region

The ROC curve depends crucially on the choice of the study region.

Ï The estimated false positive rate FP(t) is the fraction of area
in the study region satisfying a constraint.

Ï The estimated true positive rate TP(t) is the fraction of
individuals in the study region (gold deposits, trees) satisfying
a constraint.
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Weaknesses

Example: Geological survey.
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Weaknesses

Example: Geological survey.

Restrict the study region to those locations lying at most D
kilometres from a fault.
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Weaknesses

Ï The ROC curve for a particular study region cannot be
extrapolated to other study regions, even if the model is
correct in both regions, and even if one region is a subset of
the other

Ï Instances of Simpson's Paradox can occur
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Weaknesses

(b) ROC doesn't depend on details of model

Consider logistic regression on a single covariate z ,

log
pj

1−pj
=β0+β1 zj

Suppose β̂1 > 0. Then p̂j is an increasing function of zj
and, for any t,

p̂j > t if and only if zj > s

where

s = (log
t

1− t
− β̂0)/β̂1.

Baddeley ROC curves for spatial point patterns and presence-absence data



Weaknesses

(b) ROC doesn't depend on details of model

Consider logistic regression on a single covariate z ,

log
pj

1−pj
=β0+β1 zj

Suppose β̂1 > 0. Then p̂j is an increasing function of zj
and, for any t,

p̂j > t if and only if zj > s

where

s = (log
t

1− t
− β̂0)/β̂1.

Baddeley ROC curves for spatial point patterns and presence-absence data



Weaknesses

(b) ROC doesn't depend on details of model

Consider logistic regression on a single covariate z ,

log
pj

1−pj
=β0+β1 zj

Suppose β̂1 > 0. Then p̂j is an increasing function of zj
and, for any t,

p̂j > t if and only if zj > s

where

s = (log
t

1− t
− β̂0)/β̂1.

Baddeley ROC curves for spatial point patterns and presence-absence data



Weaknesses

(b) ROC doesn't depend on details of model

Consider logistic regression on a single covariate z ,

log
pj

1−pj
=β0+β1 zj

Suppose β̂1 > 0. Then p̂j is an increasing function of zj

and, for any t,

p̂j > t if and only if zj > s

where

s = (log
t

1− t
− β̂0)/β̂1.

Baddeley ROC curves for spatial point patterns and presence-absence data



Weaknesses

(b) ROC doesn't depend on details of model

Consider logistic regression on a single covariate z ,

log
pj

1−pj
=β0+β1 zj

Suppose β̂1 > 0. Then p̂j is an increasing function of zj
and, for any t,

p̂j > t if and only if zj > s

where

s = (log
t

1− t
− β̂0)/β̂1.

Baddeley ROC curves for spatial point patterns and presence-absence data



Weaknesses

(b) ROC doesn't depend on details of model

Consider logistic regression on a single covariate z ,

log
pj

1−pj
=β0+β1 zj

Suppose β̂1 > 0. Then p̂j is an increasing function of zj
and, for any t,

p̂j > t if and only if zj > s

where

s = (log
t

1− t
− β̂0)/β̂1.

Baddeley ROC curves for spatial point patterns and presence-absence data



Weaknesses

The ROC curve for the logistic regression on z is the same as the
ROC curve created by plotting

TP(s)=
∑

j yj 1{zj > s}∑
j yj

against

FP(s)=
∑

j(1−yj)1{zj > s}∑
j(1−yj)

for all thresholds s.

This ROC curve is based only on the covariate z and does not
depend on the model!
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Weaknesses

Ï All models in which the presence probability p is an increasing
function of a single covariate z , have the same ROC curve

Ï Models which are equivalent up to a monotone transformation
of the mean response, have the same ROC curve

Ï The ROC curve of a model contains no information about the
model's ability to predict absolute quantities
(probability of presence, expected number of individuals)

Ï AUC cannot be a measure of goodness-of-�t
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What does ROC really measure?

The ROC for a spatial model measures the ability of the model to

Ï segregate the study region e�ciently into subregions with
high and low density of trees/deposits

Ï rank the pixels in increasing order of probability of presence of
trees/deposits
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5. ROC based on a spatial covariate

 Given a spatial covariate z , calculate an ROC curve based on z
only, by plotting

TP(s)=
∑

j yj 1{zj > s}∑
j yj

against

FP(s)=
∑

j(1−yj)1{zj > s}∑
j(1−yj)

for all thresholds s. This ROC curve measures the
ranking/segregating ability of the covariate z .
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Geological survey: z = distance to nearest fault
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Interpretation:

✓The geological survey region can be e�ciently/usefully divided
into subregions of high and low density of gold deposits, by
specifying a threshold on the distance to the nearest major
geological fault.
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Fun fact: for the ROC curve based on a covariate Z ,

AUC =P{Z (X )>Z (Y )}

where X ,Y are independent,
X is a randomly-selected data point (gold deposit),
Y is a randomly-selected spatial location in the study region.
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Rainforest
ROC curves based on covariates

Terrain elevation Terrain slope
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Interpretation:

In the rainforest study rectangle,

× higher terrain elevations are not associated with higher
densities of trees;

✓ steeper terrain slopes are slightly associated with higher
densities of trees;

" �reading� the ROC curve is complicated!
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6. Dependence on a covariate

Ï How does forest density depend on terrain slope?

Ï How does presence of gold depend on proximity to faults?

Suppose that the probability of presence p is a function of the
covariate z ,

p = ρ(z)
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ρ(z) can be estimated from data

ρ(z) can be estimated parametrically (�species distribution model�)
or non-parametrically (�resource selection function�).

Geological survey, z =D = distance to nearest fault:
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ρ(z) is a �law�

While ROC depends critically on the choice of study region,
ρ(z) does not: the equation

p = ρ(z)

is a �relation�, �model� or �law� that could be extrapolated from
one region to another.
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The function ρ(z) is directly interpretable.

What is the relationship between ρ(z) and the ROC for z ?
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ρ is proportional to the slope of the ROC curve

If the ROC curve is a function p 7→R(p) for 0≤ p ≤ 1, then

ρ(z)= κ
d

dp
R(p) where p = FP(z),

where κ is the average probability of presence.
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Geological survey, distance to nearest fault

ρ(z) ROC
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Corresponding shapes

ρ(z) ROC
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Corresponding shapes
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The shape of the ROC curve is diagnostic

If the ROC curve is concave, then

✓ ρ(z) is an increasing function of z

✓ the most e�cient way to segregate the
region into high and low densities is to threshold the covariate z

(by the Neyman-Pearson Lemma)

✓ the ROC and AUC are appropriate summaries

If the ROC curve is not concave, thresholding the covariate z is
not optimal for predicting presence/absence.
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Geological survey, distance to nearest fault
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Rainforest, terrain elevation
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Rainforest, terrain slope

ρ(z) ROC
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To decide whether ρ(z) is an increasing function of z , it may be
safer to use the ROC curve, which is not a�ected by smoothing
artefacts.
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Rainforest, terrain slope

ρ(z) ROC
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To decide whether ρ(z) is an increasing function of z , it may be
safer to use the ROC curve, which is not a�ected by smoothing
artefacts.
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7. Other ways to use ROC

As originally de�ned, the ROC curve is a comparison between two
probability distributions (the distribution of the discriminant S in
the Positive and Negative populations).

In applications to spatial data, �the� ROC curve has been
interpreted narrowly:

Ï S = �tted probability of presence

Ï Positive �population� = observed presence pixels

Ï Negative �population� = observed absence pixels
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There are many other potential uses of ROC curves based on
di�erent choices of S and the two �populations�.
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�Traditional� ROC for spatial model

Ï S = �tted probability of presence p̂j
Ï Positive �population� = observed presence pixels

Ï Negative �population� = observed absence pixels

TP(t) =
∑

j yj 1{p̂j > t}∑
j yj

FP(t) =
∑

j(1−yj)1{p̂j > t}∑
j(1−yj)

Recommendation: calculate p̂j using leave-one-out estimate
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Empirical ROC based on a spatial covariate Z

Ï S = value of covariate Z

Ï Positive �population� = observed presence pixels

Ï Negative �population� = observed absence pixels

TP(t) =
∑

j yj 1{zj > t}∑
j yj

FP(t) =
∑

j(1−yj)1{zj > t}∑
j(1−yj)
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Predicted ROC of spatial model

Ï S = �tted probability of presence p̂j
Ï Positive population = all pixels, weight ∝ p̂j
Ï Negative population = all pixels, weight ∝ (1− p̂j)

TP(t) =
∑

j p̂j 1{p̂j > t}∑
j p̂j

FP(t) =
∑

j(1− p̂j)1{p̂j > t}∑
j(1− p̂j)
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Geological survey

Logistic regression on distance and greenstone
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The predicted ROC of a �tted spatial model is always concave.

Discrepancies between the shapes of the empirical and predicted
ROC curve suggest the model is inadequate.
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Rainforest

Logistic regressions
Empirical and predicted ROC curves

elevation slope elevation + slope
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Partial ROC

After �tting a model and computing predicted presence
probabilities p̃j , consider adding a new variable Z to the model.

Ï S = value of new covariate zj
Ï Positive population = observed presence pixels

Ï Negative population = all pixels, weight ∝ p̃j

TP(t) =
∑

j yj 1{zj > t}∑
j yj

FP(t) =
∑

j p̃j1{zj > t}∑
j p̃j

The partial ROC indicates the �bene�t� of adding the variable Z to
the existing model.
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Rainforest

Logistic regressions
Partial ROC curves for adding a covariate

regression on slope regression on elevation
add variable: elevation add variable: slope
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Colour = probability predicted by logistic regression on slope
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ROC for spatial case-control data

A spatial case-control dataset consists of a point pattern of �cases�
and a point pattern of �controls� in the same study region.

Cancer registry data

incinerator

case

control
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ROC for spatial case-control data

A spatial case-control dataset consists of a point pattern of �cases�
and a point pattern of �controls� in the same study region.

Cancer registry data

incinerator

case

control
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Stomach cells
⇑ ⇑ interior of stomach ⇑ ⇑

other

ECL

⇓ ⇓ stomach wall ⇓ ⇓
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ROC for spatial case-control data

For a spatial covariate z , create the ROC with

Ï S = value of covariate zj
Ï Positive population = cases

Ï Negative population = controls
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ROC for spatial case-control data

Stomach cells, distance from stomach wall (≡ vertical coordinate)
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ROC for spatial case-control data

Cancer registry, distance to incinerator
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8. What does AUC measure?

AUC = Area Under the ROC Curve

Some writers claim that �AUC is a measure of goodness-of-�t of
the �tted model�, in the sense that a large value of AUC indicates
that the model is a good �t to the data.
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A goodness-of-�t test is a hypothesis test of

H0 :model is true
vs

H1 :model is false

A large value of the test statistic would cause us to reject H0 and
conclude that the model does not �t the data.
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Berman, Lawson and Waller developed hypothesis tests to decide
whether probability of presence depends on a spatial covariate Z .
They are goodness-of-�t tests of

H0 :P{presence} is constant

against the one-sided alternative

H1 :P{presence} is an increasing function of Z

Berman's �Z2 test� rejects H0 if T > t, where the test statistic T
turns out to be

T =
p
12n

(
AUC− 1

2

)
where n is the number of presence pixels or data points, and
AUC is calculated for the ROC curve based on Z .

That is, AUC is a measure of badness-of-�t of the null model of
uniform probability of presence.

Baddeley ROC curves for spatial point patterns and presence-absence data



Berman, Lawson and Waller developed hypothesis tests to decide
whether probability of presence depends on a spatial covariate Z .
They are goodness-of-�t tests of

H0 :P{presence} is constant

against the one-sided alternative

H1 :P{presence} is an increasing function of Z

Berman's �Z2 test� rejects H0 if T > t, where the test statistic T
turns out to be

T =
p
12n

(
AUC− 1

2

)
where n is the number of presence pixels or data points, and
AUC is calculated for the ROC curve based on Z .

That is, AUC is a measure of badness-of-�t of the null model of
uniform probability of presence.

Baddeley ROC curves for spatial point patterns and presence-absence data



Berman, Lawson and Waller developed hypothesis tests to decide
whether probability of presence depends on a spatial covariate Z .
They are goodness-of-�t tests of

H0 :P{presence} is constant

against the one-sided alternative

H1 :P{presence} is an increasing function of Z

Berman's �Z2 test� rejects H0 if T > t, where the test statistic T
turns out to be

T =
p
12n

(
AUC− 1

2

)
where n is the number of presence pixels or data points, and
AUC is calculated for the ROC curve based on Z .

That is, AUC is a measure of badness-of-�t of the null model of
uniform probability of presence.

Baddeley ROC curves for spatial point patterns and presence-absence data



AUC is

• a measure of badness-of-�t of the null model of uniform
probability of presence

• not adjusted for sample size

• analogous to a measure of e�ect size summarising the
ranking/segregating ability of the covariate or �tted model.

• an aggregate over the whole population; insensitive to e�ects
occurring in small sub-populations
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Cancer registry data

incinerator

case

control
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Cancer registry, distance to incinerator
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AUC = 0.49

Proximity to the incinerator causes a statistically signi�cant
increase in cancer risk even though it only a�ects a small fraction
of the population.

Diggle & Rowlingson (1994)
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Cancer registry, distance to incinerator
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Conclusions

ROC and AUC

× do not measure goodness-of-�t

× do not measure predictive performance

✓ do measure �ranking�/ �segregating� ability

✓ do contain diagnostic information

" are bound to the study region

" are insensitive to details of the �tted model

✓ are useful for variable selection

 can be modi�ed/extended to serve many useful purposes
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