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Animal welfare
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Analysis of infrared video thermography

Cuthbertson et al. ( )2019
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Automatic detection of diseased organs using
hyperspectral imaging sensors

Coombs et al. ( )2023
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Evaluation of shade and shelter solutions
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Evaluation of shade and shelter solutions
Standard component: differences in outcomes between treatment groups

Exciting component: boluses in 90 or 180 animals giving 10 minute internal
temperature measurements for 100 days.

Creating synthetic data to “fill in” missingness

Using robust methods to improve drinking event detection (with Rajan Shankar)
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Health and welfare data
A lot of information…

ailments

treatments/medication

outcomes

Challenges
data quality and linkage

presence only data

rare events
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Eating quality
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Meat Standards Australia eating quality model

Predict the consumer experience based on what is observable at the
farm/abattoir.

Beef

3k trials each with 60 consumers

180k consumers who each tasted 7 samples

1.2m samples eaten

Sheep

594 trials each with 60 consumers

594 x 60 = 35,640 consumers who each tasted 7 samples

35,640 x 7 = 249,480 samples eaten

Aim
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Why?
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How?
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Target variable: eating quality
10 untrained consumers eat
each sample (muscle) cooked
to a certain protocol

Consumers rate the sample on
a scale from 0-100 on:

Tenderness

Juiciness

Flavour liking

Overall liking

Clearly some outliers present!
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Target variable: eating quality
A weighted average is
calculated to get an overall MQ4
score.

Predicting eating quality 
predicting MQ4 score

≈
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Model scope
A “separate” model for each muscle by cook combination

70+ distinct muscles

8+ cooking protocols

Grill, roast, slow cook, stir fry, shabu shabu, yakiniku, sous vide…

300+ models in total

Seems straightforward enough…

Models take the form:

predicted MQ score  = MQ0 + f(marbling, sex, pH, feed type,

HGP, hump height, maturity,

carcase weight, hang method, days aged)
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Challenge 1: unbalanced data across muscles
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Challenge 2: unbalanced data across cooks
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Challenge 3: unbalanced covariates

Vast majority of hangs are of one type (Achilles hang)

Missing & unbalanced hormone growth promotant (HGP) data

Don’t always have adequate variation in the other covariates

Opportunistically collected data over 20 years

predicted MQ score  = MQ0 + f(marbling, sex, pH, feed type,

HGP, hump height, maturity,

carcase weight, hang method, days aged)
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A standard modelling process won’t work
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Core principle 1: borrow strength from similar cooks and
muscles

Assume that the effects of the covariates are similar within blocks of muscle x
cook cells.

Reflects similarities in muscle type, position, …

In the current process, the effect of each predictor is (manually) adjusted to
ensure internal consistency of the model.
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Core principle 2: underpinned by scienti�c research
The model must reflect scientific truths and empirical observations.

Scientific truths:

maturity ⬆  eating quality ⬇

marbling ⬆  eating quality ⬆ 

days aged ⬆  eating quality ⬆

Empirical observations:

hormone growth promotant used  eating quality ⬇

⟹

⟹

⟹

⟹

21



Transformations
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Goal
Avoid a manual and tedious process of model building

A data driven way to “borrow strength” from similar classes

Maintain the assumption that effects of covariates are similar within classes

Let domain experts contribute their wisdom
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Regularised learning
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Multiclass model
Consider the following multi-class multiple linear regression model for  classes

The parameter vector, , contains all  regression coefficients for the th class.
Define the multiclass regression parameter vector,

We define its estimator as

Where  is a regularisation parameter and  are weights for each pair of
muscle cook combinations  and .
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Regularisation to the rescue

Similarity across classes is induced via a fused-lasso type penalty, i.e. absolute
value of the differences of corresponding regression parameters (

).

The larger the value of , the greater the pressure of zero differences between
corresponding regression coefficients

For   separate least squares estimator

As   pooled least squares estimator
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Example coe�cient paths
Classes 1 and 3 have
the same data
generating process

Classes 2 and 4 have
the same data
generating process

Different values of the
penalty encourage
different levels of
similarity
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Eating quality example

Tarr & Wilms ( )2022
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Pros and cons
Advantages of a multi-class approach

Data driven approach to modelling a very complex scenario

Perform at least as good as the current approach (pooled or separate, manually
adjusted)

Limitations of a multi-class approach
Signal to noise ratio

Slow for large number of classes

Modelling with too many disparate classes leads to the null model
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Where to next?
Detecting outlying “classes”

Stable feature selection for genetic data

Lamb model: similar structure with fewer cuts
and cooks

New carcass grading technologies

Cameras and probes

Dual X-ray or CT scanning

Gene markers

Outlier robust linear mixed models vs robust
aggregation

Importance of “link” samples

Develop a detailed understanding of sources of
idiosyncratic variation at each level (consumer,
pick, animal, pen, supplier, kill date, …)
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Sydney Precision Data Science Centre
We share an interest in developing statistical and computational methodologies that
facilitates data decision making in the areas of health and wellbeing, food sciences,
conservation, and biomedicine.
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