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A case

➣ On 3 March, 1991, a float glass window was smashed in a

pharmacy in Hamilton, New Zealand

➣ The offenders took drugs and prescription medicines worth

thousands of dollars

The suspects

➣ Police apprehended two suspects, Michael Johnston and John

MacKenzie, 90 minutes later

➣ Their clothing was taken but the drugs were not found
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The evidence

➣ Recovered from Johnston’s clothing

- small flakes of paint - indistinguishable from crime scene

- 11 fragments of glass

➣ MacKenzie’s clothing

- 3 fragments of glass

➣ 3 fragments were original float surfaces

➣ 9 control fragments taken from scene window

➣ Evidence quantified using RI
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The evidence
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Three principles of interpretation

Evett and Weir (1998) proposed three basic principles of evidence

interpretation

1. To evaluate the uncertainty of any given proposition it is

necessary to consider at least one alternative proposition

2. Scientific interpretation is based on questions of the kind

“What is the probability of the evidence given the

proposition?”

3. Scientific interpretation is conditioned not only by the

competing propositions, but also by the framework of

circumstances within which they are to be evaluated
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A likelihood ratio approach to evidence interpretation

Many of my colleagues and I are proponents of what is called the

“Bayesian,” or “LR,” or “logical” approach to evidence

interpretation

This way of thinking encapsulates all of the ideas on the previous

slide

We believe all forensic scientists should present evidence of in the

form of a likelihood ratio

Odds form of Bayes’ Theorem

Pr(Hp |Evidence)
Pr(Hd |Evidence) =

Pr(Evidence|Hp)
Pr(Evidence|Hd )

× Pr(Hp)
Pr(Hd )

Posterior Odds = Likelihood Ratio× Prior Odds
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The LR under consideration

➣ We start with the denominator of the LR because the

explanation is slightly simpler

Pr(Evidence|Contact)

➣ We want to know “The probability of the evidence given the

suspect was NOT in contact with the crime scene”
➣ Possible reasons:

- One group of glass there before

- and it just happened (by random chance) to match the crime

scene sample

➣ We write this as

Pr(Evidence|Contact) = P1SLf
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The LR under consideration

➣ The numerator has at least two possible explanations

Pr(Evidence|Contact)

➣ We want to know “The probability of the evidence given the

suspect WAS in contact with the crime scene”

➣ Possible explanations:

- No glass transferred , one group of glass was there before and

it matched the crime scene sample by chance or

- one group of fragments transferred from the scene

➣ We write this as

Pr(Evidence|Contact) = T0P1SLf + TLP0
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The LR under consideration

LR =
Pr(E |C )

Pr(E |C )

=
T0P1SLf + TLP0

P1SLf

= T0 +
TLP0

P1SL
× 1

f

≈ TLP0

P1SL
× 1

f
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Interpretation of the LR

➣ Survey estimates give a likelihood ratio of 25 for Johnston and

10 for MacKenzie

➣ The statement I would give in court is “The evidence is

25(10) times more likely if Mr Johnston(MacKenzie) was in

contact with the crime scene than if he wasn’t”

➣ This method of interpretation gives a far more intuitive and

usable result

➣ I might downgrade the last statement to “more logically

consistent” as the judge, the jury, and the general public have

many problems with this statement
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Where do the numbers for the P and S terms from?

➣ The glib and short answer is ‘clothing surveys’

- Lau et al. (1997) surveyed the outer clothing and footwear of

213 high school students in Vancouver

- Petterd et al. (1998) who searched the upper outer garments

of 2008 people at a shopping centre in Canberra, Australia

- Coulson et al. (2001) search the outer clothing and footwear

of 122 people attending a university gymnasium and a private

gymnasium.

- Roux et al. (2001) searched for glass fragments on the

footwear of 776 people (students, friends, family)...
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Some data

Numbers of groups of glass found on a survey of pairs of shoes

taken N = 776 people (Roux et al., 2001).

n rn

0 754

1 9

2 8

3 4

4 1

What do we do with this?
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Raw frequencies only take you so far. . .

n rn P̂k

0 754 0.972

1 9 0.006

2 8 0.010

3 4 0.005

4 1 0.001

How do I calculate P5?
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A model

Coulson et al. (2001) proposed that the P and S terms could be

modelling using a zeta distribution.

Pk =
(k + 1)−α

ζ(α)
, k = 0, 1, 2, . . . , α > 1

and

Sn =
n−α

ζ(α)
, n = 1, 2, 3, . . . , α > 1,

where ζ(α) is the Riemann zeta (or Euler-Riemann zeta) function.
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Problem solved. . . right?
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Problem solved. . . right?
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Yeah right
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Producing an R package

➣ It is relatively easy to implement this in R

➣ The optim function handles the constrained optimisation

➣ We do, however, need a stable implementation of the

Reimann-Zeta function

➣ And Thomas Yee’s VGAM package helpfully provides this

➣ The R package is called fitPS and is on CRAN
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Using fitPS with the Roux et al. data
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Using fitPS with the Roux et al. data
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Some simple extensions

Adrian Baddeley said, at the UseR conference in Aalborg in 2015,

that one of the interesting things about R is that the computation

often inspires the statistics.

This inspired me to think about some simple extensions
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Some simple extensions

You have seen a couple of these already:

- It is very easy to compute a standard error for the estimate

- And it is simple to write a plot method for the fitted object

But there is more

- If you have a standard error then you can compute a Wald

confidence interval

- And of course, given we are doing maximum likelihood it is

not hard to compute a profile likelihood interval
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And I did promise Morris Dancing

➣ Many surveys yield very little glass

1. Most observations for the number of groups is zero

2. and when we do find glass there are only one or two fragments

➣ This means lots of zeros in the P data, and abundance of ones

in the S data
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Behold its majesty!

The Zero/One Inflated Zeta

PZIZ
k =

π + 1−π
ζ(α) , k = 0,

(1−π)(k+1)−α

ζ(α) , k = 1, 2, . . . ,

and

SZIZ
n =

π + 1−π
ζ(α) , n = 1,

(1−π)n−α

ζ(α) , n = 1, 2, 3, . . . ,

where π ∈ (0, 1) and α > 1
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Comparing to the Zeta

k P̂zeta
k P̂ZIZ

k

0 0.9632 0.9716

1 0.0311 0.0169

2 0.0042 0.0053

3 0.0010 0.0023

4 0.0003 0.0012

5 0.0001 0.0007

Estimated probability that k groups of glass would be found in

shoes of a random member of the population based on the data of

Roux et al. (2001) and the zeta and ZIZ models respectively.
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Confidence Intervals
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