Bayesian Nonparametric Spectral Analysis of Multivariate Time Series

Yixuan Liu¹, Claudia Kirch², Kate Lee¹, Renate Meyer¹

¹Dept of Statistics, University of Auckland, New Zealand ²Dept of Mathematics, Otto-von-Guericke University, Magdeburg, Germany

Biometrics in the Bay of Islands, 27/11-01/12/2023

Bivariate EEG Time Series

Source: Quiroga et al. (2002), Phys. Rev. E, 65, 041903

- intra-temporal variability
- inter-temporal interactions
- Not independent nor identically distributed.
- Cyclic behaviour, but not deterministic.
 - Different heights of peaks
 - Different lengths of periods

Temporal Dependance Structure

Assumptions:

- observations are not iid but stationary (same stochastic behaviour everywhere)
- dependence decreases over time

Usually, this is no problem for any point estimates (e.g. sample average for expectation)

BUT: The quantification of uncertainty depends critically on this dependence structure!

Temporal Dependance Structure

Assumptions:

- observations are not iid but stationary (same stochastic behaviour everywhere)
- dependence decreases over time

Usually, this is no problem for any point estimates (e.g. sample average for expectation)

BUT: The quantification of uncertainty depends critically on this dependence structure!

How to quantify uncertainty without parametric assumptions?

Multivariate Time Series

Let $\mathbf{Z}_t = (Z_t^{(1)}, \dots, Z_t^{(d)})^T d$ -dim, mean-centered, stationary

 $\Gamma(h) = \operatorname{Cov}(\mathbf{Z}_{t+h}, \mathbf{Z}_t)$ independent of *t* for all lags *h*,

 $\Gamma(h)$ matrix-valued autocovariance function, positive definite

Characterisation by Spectral Density Matrix

Herglotz Lemma		
Autocovariance Function	\longleftrightarrow	Spectral Density Matrix
${f \Gamma}(h)=\int_{0}^{2\pi}e^{ih\lambda}{f f}(\lambda)d\lambda$	\longleftrightarrow	${f f}(\omega)=rac{1}{2\pi}\sum_{k=-\infty}^\infty{f \Gamma}(k)e^{-ik\omega}$

Characterisation by Spectral Density Matrix

Herglotz LemmaAutocovariance Function
$$\longleftrightarrow$$
Spectral Density Matrix $\Gamma(h) = \int_{0}^{2\pi} e^{ih\lambda} \mathbf{f}(\lambda) d\lambda$ \longleftrightarrow $\mathbf{f}(\omega) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \Gamma(k) e^{-ik\omega}$

$$\mathbf{f}(\omega) = \begin{pmatrix} f_{11}(\omega) & \cdots & f_{1d}(\omega) \\ \vdots & \ddots & \vdots \\ f_{d1}(\omega) & \cdots & f_{dd}(\omega) \end{pmatrix}$$
is

is a function on $[0, \pi]$:

- matrix-valued
- 2π-periodic
- Hermitian
- positive definite

Spectral Density of VARMA(2,2)

Nonparametric Spectral Analysis

Given observations: Z_1, \ldots, Z_n

Nonparametric estimation of spectral density

$$\mathbf{f}(\omega) = rac{1}{2\pi}\sum_{k=-\infty}^{\infty}\mathbf{\Gamma}(k)e^{-ik\omega}$$

is based on the periodogram matrix

$$\mathbf{I}_n(\omega) = \frac{1}{2\pi n} \tilde{\mathbf{Z}}(\omega) \tilde{\mathbf{Z}}(\omega)^*$$

where $\tilde{\mathbf{Z}}(\omega) = \sum_{t=1}^{n} \mathbf{Z}_{t} e^{-it\omega}$ is the Fourier transform of the time series

Simulated VARMA(2,2), n = 4096

Smoothing the Periodogram

Periodogram is asympt. unbiased but not consistent, i.e.,

$$E(\mathbf{I}_n(\omega)) \rightarrow \mathbf{f}(\omega)$$

Var($\mathbf{I}_n(\omega)$) $\rightarrow \mathbf{f}^2(\omega)$

- \longrightarrow smoothing techniques in frequentist literature:
 - kernel-based
 - nearest neighbour
 - multi-taper
 - spline-based
 - wavelet-based

For a recent review, see e.g. von Sachs (2020), Annu. Rev. Stat. Appl 7: 361-86

Bayesian Nonparametric Approach

Use asymptotic properties of periodograms:

• $I_n(\omega_j)$ asymptotically independent, $\omega_j = \frac{2\pi j}{n}$

•
$$I_n(\omega_j) \overset{asym}{\sim} Wishart_d(f(\omega_j), N), j = 0, \dots, N = \lfloor (n-1)/2 \rfloor$$

Multivariate Whittle likelihood (Whittle, 1957)

$$p^{W}(\mathbf{Z}|\mathbf{f}) \propto \exp\left\{-\sum_{j=1}^{N}\left(\log(\det(2\pi\mathbf{f}(\omega_{j}))+rac{1}{2\pi}\mathbf{\tilde{Z}}_{j}^{*}\mathbf{f}(\omega_{j})^{-1}\mathbf{\tilde{Z}}_{j}
ight)
ight\}$$

Bayesian Approaches to Multivariate Time Series

Previous Bayesian nonparametric approaches:

- smoothing splines for Cholesky components (Dai & Guo 2004, Rosen & Stoffer 2007, Zhang 2016, Li & Krafty 2018, Hu& Prado 2023)
- RJMCMC, Variational Bayes

Bayesian Approaches to Multivariate Time Series

Previous Bayesian nonparametric approaches:

- smoothing splines for Cholesky components (Dai & Guo 2004, Rosen & Stoffer 2007, Zhang 2016, Li & Krafty 2018, Hu& Prado 2023)
- RJMCMC, Variational Bayes

BUT

opsterior consistency?

Bayesian Approaches to Multivariate Time Series

Previous Bayesian nonparametric approaches:

- smoothing splines for Cholesky components (Dai & Guo 2004, Rosen & Stoffer 2007, Zhang 2016, Li & Krafty 2018, Hu& Prado 2023)
- RJMCMC, Variational Bayes

BUT

- opsterior consistency?
- choice of smoothing parameter?

Generalized Whittle Likelihood

Generalized Whittle likelihood

$$oldsymbol{
ho}^{GW}(\mathbf{Z}|\mathbf{f}) \propto \det(\mathbf{C}\mathbf{C}^*)^{-1/2} oldsymbol{
ho}_{V\!AR}(\mathbf{F}^*\mathbf{C}^{-1}\mathbf{F}\mathbf{Z})$$

Generalized Whittle Likelihood

Generalized Whittle likelihood

$$\mathcal{D}^{GW}(\mathbf{Z}|\mathbf{f}) \propto \det(\mathbf{C}\mathbf{C}^*)^{-1/2} \mathcal{p}_{V\!AR}(\mathbf{F}^*\mathbf{C}^{-1}\mathbf{F}\mathbf{Z})$$

Generalized Whittle Likelihood

Generalized Whittle likelihood

$$\mathcal{D}^{GW}(\mathbf{Z}|\mathbf{f}) \propto \det(\mathbf{C}\mathbf{C}^*)^{-1/2} \mathcal{p}_{V\!AR}(\mathbf{F}^*\mathbf{C}^{-1}\mathbf{F}\mathbf{Z})$$

Start with VAR(p) working model with spectral density f_{VAR} .

time domain

frequency domain

 $\mathbf{Z}\sim p_{V\!AR}$

Generalized Whittle Likelihood

Generalized Whittle likelihood

$$p^{GW}(\mathbf{Z}|\mathbf{f}) \propto \det(\mathbf{CC}^*)^{-1/2} p_{V\!AR}(\mathbf{F}^*\mathbf{C}^{-1}\mathbf{FZ})$$

Generalized Whittle Likelihood

Generalized Whittle likelihood

$$p^{GW}(\mathbf{Z}|\mathbf{f}) \propto \det(\mathbf{CC}^*)^{-1/2} p_{V\!AR}(\mathbf{F}^*\mathbf{C}^{-1}\mathbf{FZ})$$

Generalized Whittle Likelihood

Generalized Whittle likelihood

$$p^{GW}(\mathbf{Z}|\mathbf{f}) \propto \det(\mathbf{CC}^*)^{-1/2} p_{V\!AR}(\mathbf{F}^*\mathbf{C}^{-1}\mathbf{FZ})$$

Properties

Proposition

 The Whittle likelihood is a special case: Generalized Whittle likelihood of a Gaussian VAR(0)

2 If
$$\mathbf{f} = \mathbf{f}_{VAR}$$
, then $p^{GW} = p_{VAR}$.

The periodogram is asymptotically unbiased for the true spectral density under the Generalized Whittle likelihood.

Bernstein – Hpd Matrix Gamma Process Prior

Prior for
$$d = 1$$

(Choudhuri et al. 2003)

$$f(\pi x) = \sum_{j=1}^{k} \Phi\left(\left(\frac{j-1}{k}, \frac{j}{k}\right]\right) b_{j,k}(x)$$

 $b_{j,k}(x)$: polynomial basis $k \sim p(k)$: polynomial degree

Φ : Gamma process

Increments: $\Phi(dx) \stackrel{\text{ind}}{\sim} \text{Ga}(\alpha, \beta)$

Applications

Bernstein – Hpd Matrix Gamma Process Prior

Prior for
$$d = 1$$

(Choudhuri et al. 2003)

Prior for d > 1(Meier et al. 2020)

$$f(\pi x) = \sum_{j=1}^{k} \Phi\left(\left(\frac{j-1}{k}, \frac{j}{k}\right]\right) b_{j,k}(x)$$

 $b_{j,k}(x)$: polynomial basis $k \sim p(k)$: polynomial degree

Φ : Gamma process

Increments: $\Phi(dx) \stackrel{\text{ind}}{\sim} \text{Ga}(\alpha, \beta)$

Bernstein – Hpd Matrix Gamma Process Prior

Prior for d = 1(Choudhuri et al. 2003)

 $f(\pi x) = \sum_{j=1}^{k} \Phi\left(\left(\frac{j-1}{k}, \frac{j}{k}\right]\right) b_{j,k}(x)$

 $b_{j,k}(x)$: polynomial basis $k \sim p(k)$: polynomial degree

Φ : Gamma process

Increments: $\Phi(dx) \stackrel{\text{ind}}{\sim} \text{Ga}(\alpha, \beta)$

Prior for d > 1(Meier et al. 2020)

$$\mathbf{f}(\pi \mathbf{x}) = \sum_{j=1}^{k} \mathbf{\Phi}\left(\left(\frac{j-1}{k}, \frac{j}{k}\right]\right) \mathbf{b}_{j,k}(\mathbf{x})$$

- $b_{j,k}(x)$: polynomial basis
- $k \sim p(k)$: polynomial degree
 - Φ : Hpd Gamma process

Increments: $\Phi(dx) \stackrel{\text{ind}}{\sim} \operatorname{Ga}_{d \times d}(\alpha, \beta)$

Example Polynomial Mixture d = 2

Polynomial basis $b_{j,k}$ for k = 10. Coarsened Bernstein polynomials.

Realization of Φ. Hpd Gamma Process.

Mixture
$$\sum_{j=1}^{k} \mathbf{\Phi}\left(\left(\frac{j-1}{k}, \frac{j}{k}\right)\right) b_{j,k}(x)$$

Hpd Gamma Process

Infinite Series Representation

$$\mathbf{\Phi} = \sum_{j=1}^{\infty} \delta_{\mathbf{x}_j} \mathbf{r}_j \mathbf{U}_j$$

with independent $x_j \stackrel{iid}{\sim} U[0, 1], \mathbf{U}_j \stackrel{iid}{\sim} \alpha^*, r_j = \rho_{\alpha, \beta}^-(w_j), w_j = \sum_{i=1}^j v_i, v_i \stackrel{iid}{\sim} Exp(1)$

Simulation: inverse Lévy measure algorithm (Wolpert & Ickstadt, 1998)

Posterior Computation

• Generalized Whittle's Likelihood:

$$ho^{GW}(\mathbf{Z}|\mathbf{f}) \propto \det(\mathbf{CC}^*)^{-1/2}
ho_{V\!AR}(\mathbf{F}^*\mathbf{C}^{-1}\mathbf{FZ})$$

• Prior:

- noninformative on VAR coefficients
- Hpd Gamma process prior on $Q(\omega) := \mathbf{f}_{VAR}^{-1/2}(\omega)\mathbf{f}(\omega)\mathbf{f}_{VAR}^{-1/2}(\omega)$

$$\boldsymbol{Q}(\pi \boldsymbol{x}) = \sum_{j=1}^{k} \boldsymbol{\Phi}\left(\left(\frac{j-1}{k}, \frac{j}{k}\right]\right) \boldsymbol{b}_{j,k}(\boldsymbol{x}), \quad \boldsymbol{\Phi} = \sum_{j=1}^{L} \delta_{\boldsymbol{x}_{j}} \boldsymbol{r}_{j} \boldsymbol{\mathsf{U}}_{j}$$

• Adaptive MH-within-Gibbs: R-package beyondWhittle GitHub: https://github.com/easycure1/vnpctest

Applications

Simulation Study

Data generated from a) VAR(2) and b) VMA(1)

(b)

_

Simulation Results

	VAR(2) model								
	<i>n</i> = 256			<i>n</i> = 512			<i>n</i> = 1024		
	GW	W	VAR	GW	W	VAR	GW	W	VAR
L ₂ -error	0.130	0.136	0.099	0.101	0.106	0.067	0.080	0.084	0.047
Coverage	0.826	0.548	0.908	0.718	0.374	0.898	0.616	0.348	0.886
Width <i>f</i> ₁₁	0.341	0.314	0.210	0.177	0.168	0.121	0.109	0.104	0.078

	<i>n</i> = 256			<i>n</i> = 512			<i>n</i> = 1024		
	GW	W	VAR	GW	W	VAR	GW	W	VAR
L_2 -error	0.102	0.117	0.189	0.076	0.087	0.144	0.062	0.065	0.110
Coverage	0.888	0.594	0.980	0.876	0.518	0.972	0.690	0.294	0.966
Width <i>f</i> ₁₁	0.346	0.299	1.313	0.200	0.194	0.661	0.129	0.135	0.406

_

Simulation Results

	VAR(2) model								
	<i>n</i> = 256			<i>n</i> = 512			<i>n</i> = 1024		
	GW	W	VAR	GW	W	VAR	GW	W	VAR
L ₂ -error	0.130	0.136	0.099	0.101	0.106	0.067	0.080	0.084	0.047
Coverage	0.826	0.548	0.908	0.718	0.374	0.898	0.616	0.348	0.886
Width <i>f</i> ₁₁	0.341	0.314	0.210	0.177	0.168	0.121	0.109	0.104	0.078

VMA(1) model

	<i>n</i> = 256				<i>n</i> = 512		<i>n</i> = 1024		
	GW	W	VAR	GW	W	VAR	GW	W	VAR
L_2 -error	0.102	0.117	0.189	0.076	0.087	0.144	0.062	0.065	0.110
Coverage	0.888	0.594	0.980	0.876	0.518	0.972	0.690	0.294	0.966
Width <i>f</i> ₁₁	0.346	0.299	1.313	0.200	0.194	0.661	0.129	0.135	0.406

_

Simulation Results

	VAR(2) model									
	<i>n</i> = 256			<i>n</i> = 512			<i>n</i> = 1024			
	GW	W	VAR	GW	W	VAR	GW	W	VAR	
L ₂ -error	0.130	0.136	0.099	0.101	0.106	0.067	0.080	0.084	0.047	
Coverage	0.826	0.548	0.908	0.718	0.374	0.898	0.616	0.348	0.886	
Width <i>f</i> ₁₁	0.341	0.314	0.210	0.177	0.168	0.121	0.109	0.104	0.078	

VMA(1) model

	<i>n</i> = 256			<i>n</i> = 512			<i>n</i> = 1024		
	GW	W	VAR	GW	W	VAR	GW	W	VAR
L_2 -error	0.102	0.117	0.189	0.076	0.087	0.144	0.062	0.065	0.110
Coverage	0.888	0.594	0.980	0.876	0.518	0.972	0.690	0.294	0.966
Width <i>f</i> ₁₁	0.346	0.299	1.313	0.200	0.194	0.661	0.129	0.135	0.406

Applications

- Ecology/Oceanography: SOI-Recruitment
- Meteorology: Windspeeds at different locations
- Physiology: EEG

Applications

Southern Oscillation Index(SOI)

SOI = monthly standardized anomaly of mean sea-level pressure difference between Tahiti and Darwin

Results with Whittle Likelihood

SOI spectrum peaks at $\omega = 0.52 \longrightarrow$ period $2\pi/\omega = 12$ months strong annual autocorrelation

Applications

Choice of VAR order: Elbow Criterion

Applications

Results with Generalized Whittle Likelihood with VAR(5)

SOI spectrum peaks at $\omega = 0.52 \longrightarrow$ period $2\pi/\omega = 12$ months strong annual autocorrelation

Applications

Squared Coherence

ω

Applications

- Ecology/Oceanography: SOI-Recruitment
- Meteorology: Windspeeds at different locations
- Physiology: EEG

California Windspeed Data

Source: Iowa State University Environmental Mesonet Database, Hu and Prado (2023)

Applications

Elbow Criterion

Applications

Spectral Density Estimates

Squared Coherences by Hu and Prado (2023)

Z. Hu and R. Prado

Computational Statistics and Data Analysis 178 (2023) 107596

Squared Coherences using Generalized Whittle Likelihood

EDU vs. MRY

SAC vs. SMF

SAC vs. WVI

SAC vs. SNS

SAC vs. MRY

SMF vs. WVI

SMF vs. SNS

1.0

0.8 0.6

0.4 0.2

0.0

Squared Coherency

SMF vs. MRY

0.0

WVI vs. SNS

WVI vs. MRY

SNS vs. MRY

ω

0.0

0.8

0.6

0.4

0.2

ω

Applications

- Ecology/Oceanography: SOI-Recruitment
- Meteorology: Windspeeds at different locations
- Physiology: EEG

Two-Channel RAT EEG

Epilepsy – Synchronization

- Spike discharges
- Synchronization between right and left channels
- Pathological synchronization \rightarrow epileptic seizure

Rat B

в

GW Estimates of Spectral Densities

GW Estimates of Squared Coherence

References

Liu, Kirch, Lee, Meyer (2023).

A nonparametrically corrected likelihood for Bayesian spectral analysis of multivariate time series

http://arxiv.org/abs/2306.04966

Meier, Kirch, Meyer (2020).

Bayesian Nonparametric Analysis of Multivariate Time Series: A Matrix Gamma Process Approach.

Journal of Multivariate Analysis 175, 104560

Kirch, Edwards, Meier, Meyer (2019).

Beyond Whittle: Nonparametric Correction of a Parametric Likelihood with a Focus on Bayesian Time Series Analysis.

Bayesian Analysis 14, 1037-1073.

Hpd Gamma Distribution (Pérez-Abreu, Stelzer 2014)

• Radial decomposition: For $\mathbf{Z} > \mathbf{0}$ write $\mathbf{Z} = r\mathbf{U}$ with

• radial part
$$r = tr(\mathbf{Z}) > \mathbf{0}$$

- spherical part $\mathbf{U} \in \mathbb{S} = {\mathbf{U} > \mathbf{0} : tr\mathbf{U} = \mathbf{1}}$
- α finite measure on \mathbb{S} and $\beta : \mathbb{S} \longrightarrow (\mathbf{0}, \infty)$

Hpd Gamma Distribution (Lévy-Khinchine representation)

$$\mathbf{Z} \sim \mathbf{Ga}_{d \times d}(\alpha, \beta)$$
 if for $\theta > \mathbf{0}$

$$\mathsf{E} e^{-tr(\theta \mathbf{Z})} = \exp\left(-\int_{\mathbb{S}}\int_{0}^{\infty} [1 - e^{-tr(r\theta \mathbf{U})}]\nu_{\alpha,\beta}(dr, d\mathbf{U})\right)$$

with Hpd Gamma Lévy measure

 $\nu_{\alpha,\beta}(dr, d\mathbf{U}) = \frac{1}{r} \exp(-r\beta(\mathbf{U})) dr\alpha(d\mathbf{U})$

Applications

Hpd Gamma Process

Consider Poisson process Π on $[0, 1] \times \{\mathbf{Z} > \mathbf{0}\}$ with mean measure $\nu_{\alpha,\beta}(dr, d\mathbf{U}) dx$

Hpd Gamma Process (Kingman's Construction)

$$\mathbf{\Phi}(A) = \sum_{(x, \mathbf{Z}) \in \Pi} \mathbf{1}_A(x) \, \mathbf{Z}, \quad A \subset [0, 1]$$

Then
$$\mathbf{\Phi}(dx) \stackrel{ind}{\sim} \operatorname{Ga}_{d \times d}(\alpha, \beta)$$

Infinite Series Representation

$$\mathbf{\Phi} = \sum_{j=1}^{\infty} \delta_{x_j} r_j \mathbf{U}_j$$

with independent

$$x_j \stackrel{iid}{\sim} U[0,1], \mathbf{U}_j \stackrel{iid}{\sim} lpha^\star, r_j =
ho_{lpha,eta}^-(w_j), w_j = \sum_{i=1}^j v_i, v_i \stackrel{iid}{\sim} \mathsf{Exp}(1)$$