Closed-Form Likelihood Functions for SCR

Jing Liu*, Rachel Fewster*, and Ben Stevenson*
*University of Auckland

THE UNIVERSITY OF

Te Whare Wãnanga o Tāmaki Makaurau
NEW ZEALAND

Estimate population density from ecological survey data

Estimate population density from ecological survey data

- An array of detectors, such as traps, cameras and microphones.

[^0]
Estimate population density from ecological survey data

- An array of detectors, such as traps, cameras and microphones.

${ }^{1}$ https://www.roamingowls.com

Estimate population density from ecological survey data

- An array of detectors, such as traps, cameras and microphones.

${ }^{2}$ https://www.naturettl.com

Estimate population density from ecological survey data

- An array of detectors, such as traps, cameras and microphones.

${ }^{3}$ https://stock.adobe.com

Estimate population density from ecological survey data

- An array of detectors, such as traps, cameras and microphones.

Estimate population density from ecological survey data

- An array of detectors, such as traps, cameras and microphones.

Estimate population density from ecological survey data

- An array of detectors, such as traps, cameras and microphones.

Assumption I

${ }^{4}$ Image credits: Ilia Shalamaev

Assumption I

- We assume that animals are, or can be, uniquely marked, and that they are identified as marked when detected.

Assumption I

- We assume that animals are, or can be, uniquely marked, and that they are identified as marked when detected.

${ }^{4}$ Image credits: Ilia Shalamaev

Assumption I

- We assume that animals are, or can be, uniquely marked, and that they are identified as marked when detected.

${ }^{5}$ https://www.evolutionbiology.com

Assumption I

- We assume that animals are, or can be, uniquely marked, and that they are identified as marked when detected.

${ }^{5}$ https://www.hubpng.com

Assumption I

- We assume that animals are, or can be, uniquely marked, and that they are identified as marked when detected.

Data

- In its simplest form, our survey data typically look like the following.

Animal ID	Animal Name	Binary Capture History at each Detector						
		d1	d2	d3	d4	d5	d6	
		$(-1,-1)$	(0,-1)	$(1,-1)$	$(-1,0)$	$(0,0)$	$(1,0)$	$(-1,1)$
1	Homer	1	1	0	1	1	1	0
2	Marge	1	1	0	1	0	0	1
3	Lisa	1	1	1	0	0	1	1
4	Bart	0	0	0	1	1	1	0
$\bar{N}-\overline{3}$	Burns	0	0	0	0	$\overline{1}$	$\overline{0}$	0
$N-2$	Apu	0	1	0	1	0	1	1
$N-1$	Krusty	1	0	0	1	1	0	1
N	Moe	1	1	1	0	1	0	0

Table: Capture History

Data

- In its simplest form, our survey data typically look like the following.

Animal ID	Animal Name	Binary Capture History at each Detector						
		$\begin{gathered} \mathrm{d} 1 \\ \mathrm{~d} 2 \\ (-\overline{1},-\overline{1}) \\ (0,-\overline{1}) \end{gathered}$		$\begin{gathered} \mathrm{d} 3 \\ (1,-1) \end{gathered}$	$\frac{\mathrm{d} 4}{(-1,0)}$	$\begin{gathered} \mathrm{d} 5 \\ -(0,0) \end{gathered}$	$\begin{gathered} \mathrm{d} 6 \\ (\overline{1}, \overline{0}) \end{gathered}$	$\begin{gathered} \mathrm{d} 7 \\ (-1,1) \end{gathered}$
1	Homer	1	1	0	1	1	1	0
2	Marge	1	1	0	1	0	0	1
3	Lisa	1	1	1	0	0	1	1
4	Bart	0	0	0	1	1	1	0
$\bar{N}-\overline{3}$	Burns	0	0	0	$\overline{0}$	1	$\overline{0}$	0
$N-2$	Apu	0	1	0	1	0	1	1
$N-1$	Krusty	1	0	0	1	1	0	1
N	Moe	1	1	1	0	1	0	0

Table: Capture History

Locations

- Let s denote the location of Homer and x the location of a detector.

Locations

- Let s denote the location of Homer and x the location of a detector.

Locations

- Let s denote the location of Homer and x the location of a detector.

Locations

- Let s denote the location of Homer and x the location of a detector.

Locations

- Let s denote the location of Homer and x the location of a detector.

Locations

- Let s denote the location of Homer and x the location of a detector.

Detection Function

Spatial Capture-Recapture (SCR)

- Spatial capture-recapture models are hierarchical.

Spatial Capture-Recapture (SCR)

- Spatial capture-recapture models are hierarchical.

Spatial Capture-Recapture (SCR)

- Spatial capture-recapture models are hierarchical.

Spatial Capture-Recapture (SCR)

- Spatial capture-recapture models are hierarchical.

Spatial Capture-Recapture (SCR)

- Spatial capture-recapture models are hierarchical.

$f_{\Omega}(\Omega \mid \mathbf{S}, \mathbf{X}, \theta)$; This is the probability model for the capture histories Ω, given individuals' locations, \mathbf{S} and detectors' locations, \mathbf{X}.

Unusual Scenario-Complete data

- If all N individuals were detected, given the locations \mathbf{S} and \mathbf{X}, then

$$
f_{\Omega}(\Omega \mid \mathbf{S}, \boldsymbol{\theta})
$$

Unusual Scenario-Complete data

- If all N individuals were detected, given the locations \mathbf{S} and \mathbf{X}, then

$$
f_{\Omega}(\Omega \mid \mathbf{S}, \boldsymbol{\theta})=\prod_{i=1}^{N} \prod_{j=1}^{m} f_{\omega}\left(\omega_{i j} \mid \mathbf{s}_{i}, \mathbf{x}_{j}, \boldsymbol{\theta}\right)
$$

where $\boldsymbol{\theta}=\left(g_{0}, \sigma^{2}\right)$,

- Assume independence between individuals and detectors.

Unusual Scenario-Complete data

- If all N individuals were detected, given the locations \mathbf{S} and \mathbf{X}, then

$$
f_{\Omega}(\Omega \mid \mathbf{S}, \boldsymbol{\theta})=\prod_{i=1}^{N} \prod_{j=1}^{m} f_{\omega}\left(\omega_{i j} \mid \mathbf{s}_{i}, \mathbf{x}_{j}, \boldsymbol{\theta}\right)
$$

where $\boldsymbol{\theta}=\left(g_{0}, \sigma^{2}\right)$,

- Assume independence between individuals and detectors.
- Recall the capture history is binary,

Unusual Scenario-Complete data

- If all N individuals were detected, given the locations \mathbf{S} and \mathbf{X}, then

$$
\begin{aligned}
f_{\Omega}(\Omega \mid \mathbf{S}, \boldsymbol{\theta}) & =\prod_{i=1}^{N} \prod_{j=1}^{m} f_{\omega}\left(\omega_{i j} \mid \mathbf{s}_{i}, \mathbf{x}_{j}, \boldsymbol{\theta}\right) \\
& =\prod_{i=1}^{N} \prod_{j=1}^{m} g_{j}^{\omega_{i j}} \cdot\left(1-g_{j}\right)^{1-\omega_{i j}}
\end{aligned}
$$

where $\boldsymbol{\theta}=\left(g_{0}, \sigma^{2}\right)$,

- Assume independence between individuals and detectors.
- Recall the capture history is binary,

Unusual Scenario-Complete data

- If all N individuals were detected, given the locations \mathbf{S} and \mathbf{X}, then

$$
\begin{aligned}
f_{\Omega}(\Omega \mid \mathbf{S}, \boldsymbol{\theta}) & =\prod_{i=1}^{N} \prod_{j=1}^{m} f_{\omega}\left(\omega_{i j} \mid \mathbf{s}_{i}, \mathbf{x}_{j}, \boldsymbol{\theta}\right) \\
& =\prod_{i=1}^{N} \prod_{j=1}^{m} g_{j}^{\omega_{i j}} \cdot\left(1-g_{j}\right)^{1-\omega_{i j}}
\end{aligned}
$$

where $\boldsymbol{\theta}=\left(g_{0}, \sigma^{2}\right)$, and $g_{j}=g_{0} \exp \left(-\frac{\left\|\mathbf{s}_{i}-\mathbf{x}_{j}\right\|^{2}}{2 \sigma^{2}}\right)$.

- Assume independence between individuals and detectors.
- Recall the capture history is binary, and the detection is halfnormal.

Assumption II

- If we force the Poisson point process to be homogeneous, then $\theta=D$,

$$
f_{s}(\mathbf{S} \mid D)=\frac{(D \cdot A)^{N} \exp (-D \cdot A)}{N!} \prod_{i=1}^{N} \frac{1}{A}
$$

Assumption II

- If we force the Poisson point process to be homogeneous, then $\theta=D$,

$$
f_{s}(\mathbf{S} \mid D)=\frac{(D \cdot A)^{N} \exp (-D \cdot A)}{N!} \prod_{i=1}^{N} \frac{1}{A}
$$

where D is the density of animals in the survey region of size A.

Assumption II

- If we force the Poisson point process to be homogeneous, then $\theta=D$,

$$
f_{s}(\mathbf{S} \mid D)=\frac{(D \cdot A)^{N} \exp (-D \cdot A)}{N!} \prod_{i=1}^{N} \frac{1}{A}=\frac{D^{N} \exp (-D \cdot A)}{N!}
$$

where D is the density of animals in the survey region of size A.

Assumption II

- If we force the Poisson point process to be homogeneous, then $\theta=D$,

$$
f_{s}(\mathbf{S} \mid D)=\frac{(D \cdot A)^{N} \exp (-D \cdot A)}{N!} \prod_{i=1}^{N} \frac{1}{A}=\frac{D^{N} \exp (-D \cdot A)}{N!}
$$

where D is the density of animals in the survey region of size A.

- Conditioning on location \mathbf{S}, we have the following likelihood

$$
\begin{aligned}
\mathcal{L}^{c} & =f_{s}(\mathbf{S} \mid D) \cdot f_{\Omega}(\Omega \mid \mathbf{S}, \boldsymbol{\theta}) \\
& =\frac{D^{N} \exp (-D \cdot A)}{N!} \prod_{i=1}^{N} \prod_{j=1}^{m} g_{j}^{\omega_{i j}} \cdot\left(1-g_{j}\right)^{1-\omega_{i j}}
\end{aligned}
$$

which is known as complete-data likelihood (King et al, 2016).

Latent variable

- Of course, the location \mathbf{s}_{i} in practice is a latent variable,

$$
\mathcal{L}^{c}=\frac{D^{N} \exp (-D \cdot A)}{N!} \prod_{i=1}^{N} \prod_{j=1}^{m} g_{j}^{\omega_{i j}} \cdot\left(1-g_{j}\right)^{1-\omega_{i j}}
$$

where $g_{j}=g_{0} \exp \left(-\frac{\left\|\mathbf{s}_{i}-\mathbf{x}_{j}\right\|^{2}}{2 \sigma^{2}}\right)$.

Latent variable

- Of course, the location \mathbf{s}_{i} in practice is a latent variable,

$$
\mathcal{L}^{c}=\frac{D^{N} \exp (-D \cdot A)}{N!} \prod_{i=1}^{N} \prod_{j=1}^{m} g_{j}^{\omega_{i j}} \cdot\left(1-g_{j}\right)^{1-\omega_{i j}}
$$

where $g_{j}=g_{0} \exp \left(-\frac{\left\|\mathbf{s}_{i}-\mathbf{x}_{j}\right\|^{2}}{2 \sigma^{2}}\right)$.

- We have to marginalise over \mathbf{s} before we can estimate D, g_{0} and σ.

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \cdots \int_{\mathbb{R}^{2}} \mathcal{L}^{c}(\boldsymbol{\theta} ; \boldsymbol{\Omega}, \mathbf{S}, \mathbf{X}, N) d^{2} \mathbf{s}_{1} d^{2} \mathbf{s}_{2} \cdots d^{2} \mathbf{s}_{N} \\
= & \frac{D^{N} \exp (-D \cdot A)}{N!} \prod_{i=1}^{N} \int_{\mathbb{R}^{2}} \prod_{j=1}^{m} g_{j}^{\omega_{i j}} \cdot\left(1-g_{j}\right)^{1-\omega_{i j}} d^{2} \mathbf{s}
\end{aligned}
$$

Unobserved animals

- Of course, some animal would evade detection, then the following

$$
\begin{equation*}
\prod_{j=1}^{m}\left(1-g_{j}\right)=\prod_{j=1}^{m}\left\{1-g_{0} \exp \left(-\frac{\left\|\mathbf{s}-\mathbf{x}_{j}\right\|^{2}}{2 \sigma^{2}}\right)\right\} \tag{1}
\end{equation*}
$$

gives the probability of an animal at \mathbf{s} evades detection from all traps.

Unobserved animals

- Of course, some animal would evade detection, then the following

$$
\begin{equation*}
\prod_{j=1}^{m}\left(1-g_{j}\right)=\prod_{j=1}^{m}\left\{1-g_{0} \exp \left(-\frac{\left\|\mathbf{s}-\mathbf{x}_{j}\right\|^{2}}{2 \sigma^{2}}\right)\right\} \tag{1}
\end{equation*}
$$

gives the probability of an animal at \mathbf{s} evades detection from all traps.

- The probability of the animal at \mathbf{s} detected by at least one detector is

$$
\begin{equation*}
p(\mathbf{s})=1-\prod_{j=1}^{m}\left(1-g_{j}(\mathbf{s})\right) \tag{2}
\end{equation*}
$$

Unobserved animals

- Of course, some animal would evade detection, then the following

$$
\begin{equation*}
\prod_{j=1}^{m}\left(1-g_{j}\right)=\prod_{j=1}^{m}\left\{1-g_{0} \exp \left(-\frac{\left\|\mathbf{s}-\mathbf{x}_{j}\right\|^{2}}{2 \sigma^{2}}\right)\right\} \tag{1}
\end{equation*}
$$

gives the probability of an animal at s evades detection from all traps.

- The probability of the animal at \mathbf{s} detected by at least one detector is

$$
\begin{equation*}
p(\mathbf{s})=1-\prod_{j=1}^{m}\left(1-g_{j}(\mathbf{s})\right) \tag{2}
\end{equation*}
$$

- Integrating p over s gives the total probability of detecting an animal.

$$
\begin{equation*}
F_{\text {esa }}\left(g_{0}, \sigma^{2}, \mathbf{X}\right)=1-\int_{\mathbb{R}^{2}} \prod_{j=1}^{m}\left(1-g_{j}(\mathbf{s})\right) d^{2} \mathbf{s} \tag{3}
\end{equation*}
$$

Truncation and thinning

- In this case, we have the conditional probability of observing capture history Ω conditioning on detecting n number of individuals.

$$
\begin{equation*}
f_{\Omega}(\Omega \mid \mathbf{S}, \boldsymbol{\theta})=\prod_{i=1}^{n} \prod_{j=1}^{m} \frac{g_{j}(\mathbf{s})^{\omega_{i j}} \cdot\left(1-g_{j}(\mathbf{s})\right)^{1-\omega_{i j}}}{F_{\mathrm{esa}}} \tag{4}
\end{equation*}
$$

- And instead of working with a Poisson point process for the number of animals, we have to work with the point process for the number of detected animals, which is also Poisson,

$$
\begin{equation*}
\mathcal{L}=\frac{D^{n} \exp \left(-D \cdot F_{\mathrm{esa}}\right)}{n!} \prod_{i=1}^{n} \int_{\mathbb{R}^{2}} \prod_{j=1}^{m} g_{j}^{\omega_{i j}} \cdot\left(1-g_{j}\right)^{1-\omega_{i j}} d^{2} \mathbf{s} \tag{5}
\end{equation*}
$$

Notation

- We need to solve two integrals before obtaining the closed-form likelihood,

$$
\begin{equation*}
\mathcal{L}=\frac{D^{n} \exp \left(-D \cdot F_{\mathrm{esa}}\right)}{n!} \prod_{i=1}^{n} \int_{\mathbb{R}^{2}} \prod_{j=1}^{m} g_{j}^{\omega_{i j}} \cdot\left(1-g_{j}\right)^{1-\omega_{i j}} d^{2} \mathbf{s} \tag{6}
\end{equation*}
$$

Notation

- We need to solve two integrals before obtaining the closed-form likelihood,

$$
\begin{equation*}
\mathcal{L}=\frac{D^{n} \exp \left(-D \cdot F_{\mathrm{esa}}\right)}{n!} \prod_{i=1}^{n} \int_{\mathbb{R}^{2}} \prod_{j=1}^{m} g_{j}^{\omega_{i j}} \cdot\left(1-g_{j}\right)^{1-\omega_{i j}} d^{2} \mathbf{s} \tag{6}
\end{equation*}
$$

Notation

- We need to solve two integrals before obtaining the closed-form likelihood,

$$
\begin{equation*}
\mathcal{L}=\frac{D^{n} \exp \left(-D \cdot F_{\text {esa }}\right)}{n!} \prod_{i=1}^{n} \int_{\mathbb{R}^{2}} \prod_{j=1}^{m} g_{j}^{\omega_{i j}} \cdot\left(1-g_{j}\right)^{1-\omega_{i j}} d^{2} \mathbf{s} \tag{6}
\end{equation*}
$$

- Let $[m]=\{1,2, \cdots, m\}$ denote the set of the first m natural numbers, and

$$
\mathcal{S}_{k}=\{\mathcal{B} \in \mathcal{P}([m])| | \mathcal{B} \mid=k\}
$$

where $\mathcal{P}([m])$ is the set of all subsets of $[m]$ and $|\mathcal{B}|$ is the size of the set \mathcal{B}.

Notation

- We need to solve two integrals before obtaining the closed-form likelihood,

$$
\begin{equation*}
\mathcal{L}=\frac{D^{n} \exp \left(-D \cdot F_{\mathrm{esa}}\right)}{n!} \prod_{i=1}^{n} \int_{\mathbb{R}^{2}} \prod_{j=1}^{m} g_{j}^{\omega_{i j}} \cdot\left(1-g_{j}\right)^{1-\omega_{i j}} d^{2} \mathbf{s} \tag{6}
\end{equation*}
$$

- Let $[m]=\{1,2, \cdots, m\}$ denote the set of the first m natural numbers, and

$$
\mathcal{S}_{k}=\{\mathcal{B} \in \mathcal{P}([m])| | \mathcal{B} \mid=k\}
$$

where $\mathcal{P}([m])$ is the set of all subsets of $[m]$ and $|\mathcal{B}|$ is the size of the set \mathcal{B}.

- That is, \mathcal{S}_{k} is the set of all k-combinations of [m], e.g., if $m=3$, then

$$
\begin{aligned}
& \mathcal{S}_{1}=\{\{1\},\{2\},\{3\}\} \\
& \mathcal{S}_{2}=\{\{1,2\},\{1,3\},\{2,3\}\} \\
& \mathcal{S}_{3}=\{\{1,2,3\}\}
\end{aligned}
$$

- The halfnormal detection function is separable,

$$
\begin{equation*}
g_{j}=g_{0} \exp \left[-\frac{\left\|\mathbf{s}-\mathbf{x}_{j}\right\|^{2}}{2 \sigma^{2}}\right], \quad \text { for } j=1, \ldots, n_{d} \tag{7}
\end{equation*}
$$

(8)

- The halfnormal detection function is separable,

$$
\begin{align*}
g_{j} & =g_{0} \exp \left[-\frac{\left\|\mathbf{s}-\mathbf{x}_{j}\right\|^{2}}{2 \sigma^{2}}\right], \text { for } j=1, \ldots, n_{d}, \tag{7}\\
& =\underbrace{\sqrt{g_{0}} \exp \left[-\frac{\left(s_{1}-x_{1 j}\right)^{2}}{2 \sigma^{2}}\right]}_{a_{j}} \cdot \underbrace{\sqrt{g_{0}} \exp \left[-\frac{\left(s_{2}-x_{2 j}\right)^{2}}{2 \sigma^{2}}\right]}_{b_{j}}=a_{j} \cdot b_{j} \tag{8}
\end{align*}
$$

- The halfnormal detection function is separable,

$$
\begin{align*}
g_{j} & =g_{0} \exp \left[-\frac{\left\|\mathbf{s}-\mathbf{x}_{j}\right\|^{2}}{2 \sigma^{2}}\right], \quad \text { for } j=1, \ldots, n_{d}, \tag{7}\\
& =\underbrace{\sqrt{g_{0}} \exp \left[-\frac{\left(s_{1}-x_{1 j}\right)^{2}}{2 \sigma^{2}}\right]}_{a_{j}} \cdot \underbrace{\sqrt{g_{0}} \exp \left[-\frac{\left(s_{2}-x_{2 j}\right)^{2}}{2 \sigma^{2}}\right]}_{b_{j}}=a_{j} \cdot b_{j} \tag{8}
\end{align*}
$$

- Converting POS to SOP in the following, we have

$$
\begin{equation*}
F_{\mathrm{esa}}=1-\int_{\mathcal{R}} \prod_{j=1}^{m}\left(1-g_{j}\right) d^{2} \mathbf{s} \tag{9}
\end{equation*}
$$

- The halfnormal detection function is separable,

$$
\begin{align*}
g_{j} & =g_{0} \exp \left[-\frac{\left\|\mathbf{s}-\mathbf{x}_{j}\right\|^{2}}{2 \sigma^{2}}\right], \text { for } j=1, \ldots, n_{d}, \tag{7}\\
& =\underbrace{\sqrt{g_{0}} \exp \left[-\frac{\left(s_{1}-x_{1 j}\right)^{2}}{2 \sigma^{2}}\right]}_{a_{j}} \cdot \underbrace{\sqrt{g_{0}} \exp \left[-\frac{\left(s_{2}-x_{2 j}\right)^{2}}{2 \sigma^{2}}\right]}_{b_{j}}=a_{j} \cdot b_{j} \tag{8}
\end{align*}
$$

- Converting POS to SOP in the following, we have

$$
\begin{align*}
F_{\text {esa }} & =1-\int_{\mathcal{R}} \prod_{j=1}^{m}\left(1-g_{j}\right) d^{2} \mathbf{s} \tag{9}\\
& =1-1-\int_{\mathcal{R}} \sum_{k=1}^{m} \sum_{\mathcal{B} \in \mathcal{S}_{k}}(-1)^{k} \prod_{j \in \mathcal{B}} g_{j} d^{2} \mathbf{s} \tag{10}
\end{align*}
$$

- The halfnormal detection function is separable,

$$
\begin{align*}
g_{j} & =g_{0} \exp \left[-\frac{\left\|\mathbf{s}-\mathbf{x}_{j}\right\|^{2}}{2 \sigma^{2}}\right], \text { for } j=1, \ldots, n_{d}, \tag{7}\\
& =\underbrace{\sqrt{g_{0}} \exp \left[-\frac{\left(s_{1}-x_{1 j}\right)^{2}}{2 \sigma^{2}}\right]}_{a_{j}} \cdot \underbrace{\sqrt{g_{0}} \exp \left[-\frac{\left(s_{2}-x_{2 j}\right)^{2}}{2 \sigma^{2}}\right]}_{b_{j}}=a_{j} \cdot b_{j} \tag{8}
\end{align*}
$$

- Converting POS to SOP in the following, we have

$$
\begin{align*}
F_{\mathrm{esa}} & =1-\int_{\mathcal{R}} \prod_{j=1}^{m}\left(1-g_{j}\right) d^{2} \mathbf{s} \tag{9}\\
& =1-1-\int_{\mathcal{R}} \sum_{k=1}^{m} \sum_{\mathcal{B} \in \mathcal{S}_{k}}(-1)^{k} \prod_{j \in \mathcal{B}} g_{j} d^{2} \mathbf{s} \tag{10}\\
& =-\sum_{k=1}^{m} \sum_{\mathcal{B} \in \mathcal{S}_{k}}(-1)^{k} \underbrace{\int_{\mathcal{R}} \prod_{j \in \mathcal{B}} a_{j} \cdot b_{j} d^{2} \mathbf{s}}_{\text {Separable }} \tag{11}
\end{align*}
$$

How can we interpret this result?

- Let us use the case $m=3$,

$$
\mathcal{S}_{1}=\{\{1\},\{2\},\{3\}\} ; \mathcal{S}_{2}=\{\{1,2\},\{1,3\},\{2,3\}\} ; \mathcal{S}_{3}=\{\{1,2,3\}\}
$$

How can we interpret this result?

- Let us use the case $m=3$,

$$
\mathcal{S}_{1}=\{\{1\},\{2\},\{3\}\} ; \mathcal{S}_{2}=\{\{1,2\},\{1,3\},\{2,3\}\} ; \mathcal{S}_{3}=\{\{1,2,3\}\}
$$ and E_{i} be the event that the animal is detected by detector i

How can we interpret this result?

- Let us use the case $m=3$,

$$
\mathcal{S}_{1}=\{\{1\},\{2\},\{3\}\} ; \mathcal{S}_{2}=\{\{1,2\},\{1,3\},\{2,3\}\} ; \mathcal{S}_{3}=\{\{1,2,3\}\}
$$ and E_{i} be the event that the animal is detected by detector i

$$
F_{\text {esa }}=\mathrm{P}(\text { An animal is detected })
$$

How can we interpret this result?

- Let us use the case $m=3$,

$$
\mathcal{S}_{1}=\{\{1\},\{2\},\{3\}\} ; \mathcal{S}_{2}=\{\{1,2\},\{1,3\},\{2,3\}\} ; \mathcal{S}_{3}=\{\{1,2,3\}\}
$$ and E_{i} be the event that the animal is detected by detector i

$$
\begin{aligned}
F_{\mathrm{esa}} & =\mathrm{P}(\text { An animal is detected }) \\
& =\int_{\mathcal{R}} 1-\prod_{j=1}^{3}\left(1-g_{j}(\mathbf{s})\right) d^{2} \mathbf{s}
\end{aligned}
$$

How can we interpret this result?

- Let us use the case $m=3$,

$$
\mathcal{S}_{1}=\{\{1\},\{2\},\{3\}\} ; \mathcal{S}_{2}=\{\{1,2\},\{1,3\},\{2,3\}\} ; \mathcal{S}_{3}=\{\{1,2,3\}\}
$$ and E_{i} be the event that the animal is detected by detector i

$$
\begin{aligned}
F_{\text {esa }} & =\mathrm{P}(\text { An animal is detected }) \\
& =\int_{\mathcal{R}} 1-\prod_{j=1}^{3}\left(1-g_{j}(\mathbf{s})\right) d^{2} \mathbf{s} \\
& =-\sum_{k=1}^{3} \sum_{\mathcal{B} \in \mathcal{S}_{k}}(-1)^{k} \int_{\mathcal{R}} \prod_{j \in \mathcal{B}} a_{j} \cdot b_{j} d^{2} \mathbf{s}
\end{aligned}
$$

How can we interpret this result?

- Let us use the case $m=3$,

$$
\mathcal{S}_{1}=\{\{1\},\{2\},\{3\}\} ; \mathcal{S}_{2}=\{\{1,2\},\{1,3\},\{2,3\}\} ; \mathcal{S}_{3}=\{\{1,2,3\}\}
$$ and E_{i} be the event that the animal is detected by detector i

$$
\begin{aligned}
F_{\mathrm{esa}} & =\mathrm{P}(\text { An animal is detected }) \\
& =\int_{\mathcal{R}} 1-\prod_{j=1}^{3}\left(1-g_{j}(\mathbf{s})\right) d^{2} \mathbf{s} \\
& =-\sum_{k=1}^{3} \sum_{\mathcal{B} \in \mathcal{S}_{k}}(-1)^{k} \int_{\mathcal{R}} \prod_{j \in \mathcal{B}} a_{j} \cdot b_{j} d^{2} \mathbf{s} \\
\mathrm{P}\left(\bigcup_{j=1}^{3} E_{i}\right) &
\end{aligned}
$$

How can we interpret this result?

- Let us use the case $m=3$,

$$
\mathcal{S}_{1}=\{\{1\},\{2\},\{3\}\} ; \mathcal{S}_{2}=\{\{1,2\},\{1,3\},\{2,3\}\} ; \mathcal{S}_{3}=\{\{1,2,3\}\}
$$ and E_{i} be the event that the animal is detected by detector i

$$
\begin{aligned}
F_{\mathrm{esa}} & =\mathrm{P}(\text { An animal is detected }) \\
& =\int_{\mathcal{R}} 1-\prod_{j=1}^{3}\left(1-g_{j}(\mathbf{s})\right) d^{2} \mathbf{s} \\
& =-\sum_{k=1}^{3} \sum_{\mathcal{B} \in \mathcal{S}_{k}}(-1)^{k} \int_{\mathcal{R}} \prod_{j \in \mathcal{B}} a_{j} \cdot b_{j} d^{2} \mathbf{s} \\
\mathrm{P}\left(\bigcup_{j=1}^{3} E_{i}\right) & =\sum_{i=1}^{3} \mathrm{P}\left(E_{i}\right)-\sum_{i, j \in \mathcal{S}_{3} ; i \neq j} \mathrm{P}\left(E_{i} \cap E_{j}\right)+\mathrm{P}\left(E_{1} \cap E_{2} \cap E_{3}\right)
\end{aligned}
$$

- Reducing double to single by separating the integrals, we have

$$
\begin{equation*}
\int_{\mathcal{R}} \prod_{j \in \mathcal{B}} g_{j} d^{2} \mathbf{s}=\underbrace{\int_{\mathcal{R}} \prod_{j \in \mathcal{B}} a_{j} d s_{1}}_{\alpha_{\mathcal{B}}} \cdot \underbrace{\int_{\mathcal{R}} \prod_{j \in \mathcal{B}} b_{j} d s_{2}}_{\beta_{\mathcal{B}}} \tag{12}
\end{equation*}
$$

- Reducing double to single by separating the integrals, we have

$$
\begin{equation*}
\int_{\mathcal{R}} \prod_{j \in \mathcal{B}} g_{j} d^{2} \mathbf{s}=\underbrace{\int_{\mathcal{R}} \prod_{j \in \mathcal{B}} a_{j} d s_{1}}_{\alpha_{\mathcal{B}}} \cdot \underbrace{\int_{\mathcal{R}} \prod_{j \in \mathcal{B}} b_{j} d s_{2}}_{\beta_{\mathcal{B}}} \tag{12}
\end{equation*}
$$

where $\alpha_{\mathcal{B}}$ and $\beta_{\mathcal{B}}$ can be found, by using integration by parts, regrouping, and results in Gaussian integrals, which lead us to the following form

$$
\begin{equation*}
\gamma_{\mathcal{B}}=\int_{\mathbb{R}^{2}} \prod_{j \in \mathcal{B}} g_{j} d^{2} \mathbf{s}=g_{0}^{|\mathcal{B}|} \exp \left[\frac{|\mathcal{B}|}{2 \sigma^{2}}\left(\left\|\mathbf{c}_{\mathcal{B}}\right\|^{2}-\mu_{\mathcal{B}}\right)\right] \frac{2 \pi \sigma^{2}}{|\mathcal{B}|} \tag{13}
\end{equation*}
$$

- Reducing double to single by separating the integrals, we have

$$
\begin{equation*}
\int_{\mathcal{R}} \prod_{j \in \mathcal{B}} g_{j} d^{2} \mathbf{s}=\underbrace{\int_{\mathcal{R}} \prod_{j \in \mathcal{B}} a_{j} d s_{1}}_{\alpha_{\mathcal{B}}} \cdot \underbrace{\int_{\mathcal{R}} \prod_{j \in \mathcal{B}} b_{j} d s_{2}}_{\beta_{\mathcal{B}}} \tag{12}
\end{equation*}
$$

where $\alpha_{\mathcal{B}}$ and $\beta_{\mathcal{B}}$ can be found, by using integration by parts, regrouping, and results in Gaussian integrals, which lead us to the following form

$$
\begin{equation*}
\gamma_{\mathcal{B}}=\int_{\mathbb{R}^{2}} \prod_{j \in \mathcal{B}} g_{j} d^{2} \mathbf{s}=g_{0}^{|\mathcal{B}|} \exp \left[\frac{|\mathcal{B}|}{2 \sigma^{2}}\left(\left\|\mathbf{c}_{\mathcal{B}}\right\|^{2}-\mu_{\mathcal{B}}\right)\right] \frac{2 \pi \sigma^{2}}{|\mathcal{B}|} \tag{13}
\end{equation*}
$$

- The term $\mathbf{c}_{\mathcal{B}}$ denotes the centroid of detectors defined by the set \mathcal{B} and $\mu_{\mathcal{B}}$ denotes the mean squared Euclidean norm of the detector coordinates

$$
\begin{equation*}
\mu_{\mathcal{B}}=\frac{1}{|\mathcal{B}|} \sum_{j \in \mathcal{B}}\left\|\mathbf{x}_{j}\right\|^{2} \tag{14}
\end{equation*}
$$

Detection integral

- The other type of integrals can be found in a similar way

$$
\begin{equation*}
\mathcal{L}=\frac{D^{n} \exp \left(-D \cdot F_{\text {esa }}\right)}{n!} \prod_{i=1}^{n} \int_{\mathbb{R}^{2}} \prod_{j=1}^{m} g_{j}^{\omega_{i j}} \cdot\left(1-g_{j}\right)^{1-\omega_{i j}} d^{2} \mathbf{s} \tag{15}
\end{equation*}
$$

Detection integral

- The other type of integrals can be found in a similar way

$$
\begin{align*}
\mathcal{L} & =\frac{D^{n} \exp \left(-D \cdot F_{\text {esa }}\right)}{n!} \prod_{i=1}^{n} \int_{\mathbb{R}^{2}} \prod_{j=1}^{m} g_{j}^{\omega_{i j}} \cdot\left(1-g_{j}\right)^{1-\omega_{i j}} d^{2} \mathbf{s} \\
& =\frac{D^{n}}{n!} \cdot \exp \left(-D F_{\text {esa }}\right) \cdot F_{\text {det }} \tag{15}
\end{align*}
$$

Detection integral

- The other type of integrals can be found in a similar way

$$
\begin{align*}
\mathcal{L} & =\frac{D^{n} \exp \left(-D \cdot F_{\text {esa }}\right)}{n!} \prod_{i=1}^{n} \int_{\mathbb{R}^{2}} \prod_{j=1}^{m} g_{j}^{\omega_{i j}} \cdot\left(1-g_{j}\right)^{1-\omega_{i j}} d^{2} \mathbf{s} \\
& =\frac{D^{n}}{n!} \cdot \exp \left(-D F_{\text {esa }}\right) \cdot F_{\text {det }} \tag{15}
\end{align*}
$$

where $F_{\text {det }}$ is again separable with respect to each \mathbf{s}_{j} due to independence,

$$
\begin{equation*}
F_{\mathrm{det}} \tag{16}
\end{equation*}
$$

Detection integral

- The other type of integrals can be found in a similar way

$$
\begin{align*}
\mathcal{L} & =\frac{D^{n} \exp \left(-D \cdot F_{\text {esa }}\right)}{n!} \prod_{i=1}^{n} \int_{\mathbb{R}^{2}} \prod_{j=1}^{m} g_{j}^{\omega_{i j}} \cdot\left(1-g_{j}\right)^{1-\omega_{i j}} d^{2} \mathbf{s} \\
& =\frac{D^{n}}{n!} \cdot \exp \left(-D F_{\text {esa }}\right) \cdot F_{\text {det }} \tag{15}
\end{align*}
$$

where $F_{\text {det }}$ is again separable with respect to each \mathbf{s}_{j} due to independence,

$$
\begin{equation*}
F_{\mathrm{det}}=\prod_{i=1}^{n} \int_{\mathbb{R}^{2}} \prod_{j=1}^{m} g_{j}^{\omega_{i j}} \cdot\left(1-g_{j}\right)^{1-\omega_{i j}} d^{2} \mathbf{s} \tag{16}
\end{equation*}
$$

Detection integral

- The other type of integrals can be found in a similar way

$$
\begin{align*}
\mathcal{L} & =\frac{D^{n} \exp \left(-D \cdot F_{\text {esa }}\right)}{n!} \prod_{i=1}^{n} \int_{\mathbb{R}^{2}} \prod_{j=1}^{m} g_{j}^{\omega_{i j}} \cdot\left(1-g_{j}\right)^{1-\omega_{i j}} d^{2} \mathbf{s} \\
& =\frac{D^{n}}{n!} \cdot \exp \left(-D F_{\text {esa }}\right) \cdot F_{\mathrm{det}} \tag{15}
\end{align*}
$$

where $F_{\text {det }}$ is again separable with respect to each \mathbf{s}_{j} due to independence,

$$
\begin{equation*}
F_{\mathrm{det}}=\prod_{i=1}^{n} \int_{\mathbb{R}^{2}} \prod_{j=1}^{m} g_{j}^{\omega_{i j}} \cdot\left(1-g_{j}\right)^{1-\omega_{i j}} d^{2} \mathbf{s} \tag{16}
\end{equation*}
$$

which means we never need to deal with any integral in high dimension.

- Let $\mathcal{N}_{i}=\left\{j \in[m] \mid \omega_{i j}=0\right\}$, the set of detector(s) fail to detect animal i.
- Let $\mathcal{N}_{i}=\left\{j \in[m] \mid \omega_{i j}=0\right\}$, the set of detector(s) fail to detect animal i. and $\mathcal{S}_{k}^{\mathcal{N}_{i}}$ denote the set of all k-combinations of \mathcal{N}_{i}, that is

$$
\begin{equation*}
\mathcal{S}_{k}^{\mathcal{N}_{i}}=\left\{\mathcal{B} \in \mathcal{P}\left(\mathcal{N}_{i}\right)| | \mathcal{B} \mid=k\right\} \tag{17}
\end{equation*}
$$

- Let $\mathcal{N}_{i}=\left\{j \in[m] \mid \omega_{i j}=0\right\}$, the set of detector(s) fail to detect animal i. and $\mathcal{S}_{k}^{\mathcal{N}_{i}}$ denote the set of all k-combinations of \mathcal{N}_{i}, that is

$$
\begin{equation*}
\mathcal{S}_{k}^{\mathcal{N}_{i}}=\left\{\mathcal{B} \in \mathcal{P}\left(\mathcal{N}_{i}\right)| | \mathcal{B} \mid=k\right\} \tag{17}
\end{equation*}
$$

where $\mathcal{P}\left(\mathcal{N}_{i}\right)$ denotes the set of all subsets of \mathcal{N}_{i}.

- Let $\mathcal{N}_{i}=\left\{j \in[m] \mid \omega_{i j}=0\right\}$, the set of detector(s) fail to detect animal i. and $\mathcal{S}_{k}^{\mathcal{N}_{i}}$ denote the set of all k-combinations of \mathcal{N}_{i}, that is

$$
\begin{equation*}
\mathcal{S}_{k}^{\mathcal{N}_{i}}=\left\{\mathcal{B} \in \mathcal{P}\left(\mathcal{N}_{i}\right)| | \mathcal{B} \mid=k\right\} \tag{17}
\end{equation*}
$$

where $\mathcal{P}\left(\mathcal{N}_{i}\right)$ denotes the set of all subsets of \mathcal{N}. Furthermore, let

$$
\begin{equation*}
\mathcal{N}_{i}^{\prime}=\left\{j \in[m] \mid \omega_{i j}=1\right\} \tag{18}
\end{equation*}
$$

- Let $\mathcal{N}_{i}=\left\{j \in[m] \mid \omega_{i j}=0\right\}$, the set of detector(s) fail to detect animal i. and $\mathcal{S}_{k}^{\mathcal{N}_{i}}$ denote the set of all k-combinations of \mathcal{N}_{i}, that is

$$
\begin{equation*}
\mathcal{S}_{k}^{\mathcal{N}_{i}}=\left\{\mathcal{B} \in \mathcal{P}\left(\mathcal{N}_{i}\right)| | \mathcal{B} \mid=k\right\} \tag{17}
\end{equation*}
$$

where $\mathcal{P}\left(\mathcal{N}_{i}\right)$ denotes the set of all subsets of \mathcal{N}_{i}. Furthermore, let

$$
\begin{equation*}
\mathcal{N}_{i}^{\prime}=\left\{j \in[m] \mid \omega_{i j}=1\right\} \tag{18}
\end{equation*}
$$

- For example, if $m=5$ and $\boldsymbol{\omega}_{j}=(1,1,0,0,0)$,
- Let $\mathcal{N}_{i}=\left\{j \in[m] \mid \omega_{i j}=0\right\}$, the set of detector(s) fail to detect animal i. and $\mathcal{S}_{k}^{\mathcal{N}_{i}}$ denote the set of all k-combinations of \mathcal{N}_{i}, that is

$$
\begin{equation*}
\mathcal{S}_{k}^{\mathcal{N}_{i}}=\left\{\mathcal{B} \in \mathcal{P}\left(\mathcal{N}_{i}\right)| | \mathcal{B} \mid=k\right\} \tag{17}
\end{equation*}
$$

where $\mathcal{P}\left(\mathcal{N}_{i}\right)$ denotes the set of all subsets of \mathcal{N}_{i}. Furthermore, let

$$
\begin{equation*}
\mathcal{N}_{i}^{\prime}=\left\{j \in[m] \mid \omega_{i j}=1\right\} \tag{18}
\end{equation*}
$$

- For example, if $m=5$ and $\boldsymbol{\omega}_{j}=(1,1,0,0,0)$, then

$$
\mathcal{N}_{i}=\{3,4,5\}
$$

- Let $\mathcal{N}_{i}=\left\{j \in[m] \mid \omega_{i j}=0\right\}$, the set of detector(s) fail to detect animal i. and $\mathcal{S}_{k}^{\mathcal{N}_{i}}$ denote the set of all k-combinations of \mathcal{N}_{i}, that is

$$
\begin{equation*}
\mathcal{S}_{k}^{\mathcal{N}_{i}}=\left\{\mathcal{B} \in \mathcal{P}\left(\mathcal{N}_{i}\right)| | \mathcal{B} \mid=k\right\} \tag{17}
\end{equation*}
$$

where $\mathcal{P}\left(\mathcal{N}_{i}\right)$ denotes the set of all subsets of \mathcal{N}_{i}. Furthermore, let

$$
\begin{equation*}
\mathcal{N}_{i}^{\prime}=\left\{j \in[m] \mid \omega_{i j}=1\right\} \tag{18}
\end{equation*}
$$

- For example, if $m=5$ and $\boldsymbol{\omega}_{j}=(1,1,0,0,0)$, then

$$
\begin{aligned}
\mathcal{N}_{i} & =\{3,4,5\} \\
\mathcal{N}_{i}^{\prime} & =\{1,2\}
\end{aligned}
$$

- Let $\mathcal{N}_{i}=\left\{j \in[m] \mid \omega_{i j}=0\right\}$, the set of detector(s) fail to detect animal i. and $\mathcal{S}_{k}^{\mathcal{N}_{i}}$ denote the set of all k-combinations of \mathcal{N}_{i}, that is

$$
\begin{equation*}
\mathcal{S}_{k}^{\mathcal{N}_{i}}=\left\{\mathcal{B} \in \mathcal{P}\left(\mathcal{N}_{i}\right)| | \mathcal{B} \mid=k\right\} \tag{17}
\end{equation*}
$$

where $\mathcal{P}\left(\mathcal{N}_{i}\right)$ denotes the set of all subsets of \mathcal{N}_{i}. Furthermore, let

$$
\begin{equation*}
\mathcal{N}_{i}^{\prime}=\left\{j \in[m] \mid \omega_{i j}=1\right\} \tag{18}
\end{equation*}
$$

- For example, if $m=5$ and $\boldsymbol{\omega}_{j}=(1,1,0,0,0)$, then

$$
\begin{aligned}
\mathcal{N}_{i} & =\{3,4,5\} \\
\mathcal{N}_{i}^{\prime} & =\{1,2\} \\
\mathcal{S}_{1}^{\mathcal{N}_{i}} & =\{\{3\},\{4\},\{5\}\}
\end{aligned}
$$

- Let $\mathcal{N}_{i}=\left\{j \in[m] \mid \omega_{i j}=0\right\}$, the set of detector(s) fail to detect animal i. and $\mathcal{S}_{k}^{\mathcal{N}_{i}}$ denote the set of all k-combinations of \mathcal{N}_{i}, that is

$$
\begin{equation*}
\mathcal{S}_{k}^{\mathcal{N}_{i}}=\left\{\mathcal{B} \in \mathcal{P}\left(\mathcal{N}_{i}\right)| | \mathcal{B} \mid=k\right\} \tag{17}
\end{equation*}
$$

where $\mathcal{P}\left(\mathcal{N}_{i}\right)$ denotes the set of all subsets of \mathcal{N}_{i}. Furthermore, let

$$
\begin{equation*}
\mathcal{N}_{i}^{\prime}=\left\{j \in[m] \mid \omega_{i j}=1\right\} \tag{18}
\end{equation*}
$$

- For example, if $m=5$ and $\boldsymbol{\omega}_{j}=(1,1,0,0,0)$, then

$$
\begin{aligned}
\mathcal{N}_{i} & =\{3,4,5\} \\
\mathcal{N}_{i}^{\prime} & =\{1,2\} \\
\mathcal{S}_{1}^{\mathcal{N}_{i}} & =\{\{3\},\{4\},\{5\}\} \\
\mathcal{S}_{2}^{\mathcal{N}_{i}} & =\{\{3,4\},\{3,5\},\{4,5\}\}
\end{aligned}
$$

- Let $\mathcal{N}_{i}=\left\{j \in[m] \mid \omega_{i j}=0\right\}$, the set of detector(s) fail to detect animal i. and $\mathcal{S}_{k}^{\mathcal{N}_{i}}$ denote the set of all k-combinations of \mathcal{N}_{i}, that is

$$
\begin{equation*}
\mathcal{S}_{k}^{\mathcal{N}_{i}}=\left\{\mathcal{B} \in \mathcal{P}\left(\mathcal{N}_{i}\right)| | \mathcal{B} \mid=k\right\} \tag{17}
\end{equation*}
$$

where $\mathcal{P}\left(\mathcal{N}_{i}\right)$ denotes the set of all subsets of \mathcal{N}_{i}. Furthermore, let

$$
\begin{equation*}
\mathcal{N}_{i}^{\prime}=\left\{j \in[m] \mid \omega_{i j}=1\right\} \tag{18}
\end{equation*}
$$

- For example, if $m=5$ and $\boldsymbol{\omega}_{j}=(1,1,0,0,0)$, then

$$
\begin{aligned}
\mathcal{N}_{i} & =\{3,4,5\} \\
\mathcal{N}_{i}^{\prime} & =\{1,2\} \\
\mathcal{S}_{1}^{\mathcal{N}_{i}} & =\{\{3\},\{4\},\{5\}\} \\
\mathcal{S}_{2}^{\mathcal{N}_{i}} & =\{\{3,4\},\{3,5\},\{4,5\}\} \\
\mathcal{S}_{3}^{\mathcal{N}_{i}} & =\{\{3,4,5\}\}
\end{aligned}
$$

- Using the above notation and a similar strategy, we can rewrite

$$
\begin{equation*}
F_{\mathrm{det}}=\prod_{i=1}^{n} \int_{\mathbb{R}^{2}} \prod_{j=1}^{m} g_{j}^{\omega_{i j}}\left(1-g_{j}\right)^{1-\omega_{i j}} d^{2} \mathbf{s} \tag{19}
\end{equation*}
$$

- Using the above notation and a similar strategy, we can rewrite

$$
\begin{align*}
F_{\mathrm{det}} & =\prod_{i=1}^{n} \int_{\mathbb{R}^{2}} \prod_{j=1}^{m} g_{j}^{\omega_{i j}}\left(1-g_{j}\right)^{1-\omega_{i j}} d^{2} \mathbf{s} \tag{19}\\
& =\prod_{i=1}^{n} \int_{\mathbb{R}^{2}}\left[\prod_{j \in \mathcal{N}_{i}^{\prime}} g_{j}\right]\left[\prod_{j \in \mathcal{N}_{i}}\left(1-g_{j}\right)\right] d^{2} \mathbf{s} \tag{20}
\end{align*}
$$

- Using the above notation and a similar strategy, we can rewrite

$$
\begin{align*}
F_{\mathrm{det}} & =\prod_{i=1}^{n} \int_{\mathbb{R}^{2}} \prod_{j=1}^{m} g_{j}^{\omega_{i j}}\left(1-g_{j}\right)^{1-\omega_{i j}} d^{2} \mathbf{s} \tag{19}\\
& =\prod_{i=1}^{n} \int_{\mathbb{R}^{2}}\left[\prod_{j \in \mathcal{N}_{i}^{\prime}} g_{j}\right]\left[\prod_{j \in \mathcal{N}_{i}}\left(1-g_{j}\right)\right] d^{2} \mathbf{s} \tag{20}\\
& =\prod_{i=1}^{n}\left(W_{i}+V_{i}\right) \tag{21}
\end{align*}
$$

- Using the above notation and a similar strategy, we can rewrite

$$
\begin{align*}
F_{\mathrm{det}} & =\prod_{i=1}^{n} \int_{\mathbb{R}^{2}} \prod_{j=1}^{m} g_{j}^{\omega_{i j}}\left(1-g_{j}\right)^{1-\omega_{i j}} d^{2} \mathbf{s} \tag{19}\\
& =\prod_{i=1}^{n} \int_{\mathbb{R}^{2}}\left[\prod_{j \in \mathcal{N}_{i}^{\prime}} g_{j}\right]\left[\prod_{j \in \mathcal{N}_{i}}\left(1-g_{j}\right)\right] d^{2} \mathbf{s} \tag{20}\\
& =\prod_{i=1}^{n}\left(W_{i}+V_{i}\right) \tag{21}
\end{align*}
$$

where

$$
\begin{equation*}
W_{i}=\int_{\mathbb{R}^{2}} \prod_{j \in \mathcal{N}_{i}^{\prime}} g_{j} d^{2} \mathbf{s}=\gamma_{\mathcal{N}_{i}^{\prime}} \tag{22}
\end{equation*}
$$

- Using the above notation and a similar strategy, we can rewrite

$$
\begin{align*}
F_{\mathrm{det}} & =\prod_{i=1}^{n} \int_{\mathbb{R}^{2}} \prod_{j=1}^{m} g_{j}^{\omega_{i j}}\left(1-g_{j}\right)^{1-\omega_{i j}} d^{2} \mathbf{s} \tag{19}\\
& =\prod_{i=1}^{n} \int_{\mathbb{R}^{2}}\left[\prod_{j \in \mathcal{N}_{i}^{\prime}} g_{j}\right]\left[\prod_{j \in \mathcal{N}_{i}}\left(1-g_{j}\right)\right] d^{2} \mathbf{s} \tag{20}\\
& =\prod_{i=1}^{n}\left(W_{i}+V_{i}\right) \tag{21}
\end{align*}
$$

where

$$
\begin{align*}
W_{i} & =\int_{\mathbb{R}^{2}} \prod_{j \in \mathcal{N}_{i}^{\prime}} g_{j} d^{2} \mathbf{s}=\gamma_{\mathcal{N}_{i}^{\prime}} \tag{22}\\
V_{i} & =\sum_{k=1}^{\left|\mathcal{N}_{i}\right|} \sum_{\mathcal{B} \in \mathcal{S}_{k}^{\mathcal{N}_{i}}}(-1)^{k} \int_{\mathbb{R}^{2}} \prod_{j \in \mathcal{B} \cup \mathcal{N}_{i}^{\prime}} g_{j} d^{2} \mathbf{s}=\sum_{k=1}^{\left|\mathcal{N}_{i}\right|} \sum_{\mathcal{B} \in \mathcal{S}_{k}^{\mathcal{N}_{i}}}(-1)^{k} \gamma_{\mathcal{B} \cup \mathcal{N}_{i}^{\prime}} \tag{23}
\end{align*}
$$

Closed-form marginal likelihood
The marginal semi-complete-data likelihood with half-normal detection function,

$$
\begin{align*}
\mathcal{L}^{s c}(\boldsymbol{\theta} ; \boldsymbol{\Omega}, \mathbf{X}, n)= & \frac{D^{n} \exp \left(-D \cdot F_{\text {esa }}\right)}{n!} \cdot F_{\operatorname{det}_{n}} \tag{24}\\
= & \frac{D^{n}}{n!} \exp \left(D \cdot \sum_{k=1}^{m} \sum_{\mathcal{B} \in \mathcal{S}_{k}}(-1)^{k} \gamma_{\mathcal{B}}\right) . \\
& \prod_{i=1}^{n}\left(\gamma_{\mathcal{N}_{i}^{\prime}}+\sum_{k=1}^{\left|\mathcal{N}_{i}\right|} \sum_{\mathcal{B} \in \mathcal{S}_{k}^{\mathcal{N}_{i}}}(-1)^{k} \gamma_{\mathcal{B} \cup \mathcal{N}_{i}^{\prime}}\right) \tag{25}
\end{align*}
$$

where

$$
\begin{equation*}
\gamma_{\mathcal{B}}=g_{0}^{|\mathcal{B}|} \exp \left[\frac{|\mathcal{B}|}{2 \sigma^{2}}\left(\left\|\mathbf{c}_{\mathcal{B}}\right\|^{2}-\mu_{\mathcal{B}}\right)\right] \frac{2 \pi \sigma^{2}}{|\mathcal{B}|} \tag{26}
\end{equation*}
$$

and the term $\mathbf{c}_{\mathcal{B}}$ denotes the centroid of detectors defined by the set \mathcal{B} and $\mu_{\mathcal{B}}$ denotes the mean squared Euclidean norm of the detector coordinates

Thank you!

[^0]: ${ }^{1}$ https://www.roamingowls.com

