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Introduction

Estimate population density from ecological survey data

An array of detectors, such as traps, cameras and microphones.

1

1https://www.roamingowls.com
Jing Liu, Rachel Fewster, and Ben Stevenson (Inst1)Closed-Form Likelihood Functions for SCR November 28, 2023 2 / 21



Introduction

Estimate population density from ecological survey data

An array of detectors, such as traps, cameras and microphones.

1

1https://www.roamingowls.com
Jing Liu, Rachel Fewster, and Ben Stevenson (Inst1)Closed-Form Likelihood Functions for SCR November 28, 2023 2 / 21



Introduction

Estimate population density from ecological survey data

An array of detectors, such as traps, cameras and microphones.

1

1https://www.roamingowls.com
Jing Liu, Rachel Fewster, and Ben Stevenson (Inst1)Closed-Form Likelihood Functions for SCR November 28, 2023 2 / 21



Introduction

Estimate population density from ecological survey data

An array of detectors, such as traps, cameras and microphones.

2

2https://www.naturettl.com
Jing Liu, Rachel Fewster, and Ben Stevenson (Inst1)Closed-Form Likelihood Functions for SCR November 28, 2023 2 / 21



Introduction

Estimate population density from ecological survey data

An array of detectors, such as traps, cameras and microphones.

3

3https://stock.adobe.com
Jing Liu, Rachel Fewster, and Ben Stevenson (Inst1)Closed-Form Likelihood Functions for SCR November 28, 2023 2 / 21



Introduction

Estimate population density from ecological survey data

An array of detectors, such as traps, cameras and microphones.

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

x_1

x_
2

1 2 3

4 5 6

7 8 9

Jing Liu, Rachel Fewster, and Ben Stevenson (Inst1)Closed-Form Likelihood Functions for SCR November 28, 2023 2 / 21



Introduction

Estimate population density from ecological survey data

An array of detectors, such as traps, cameras and microphones.

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

x_1

x_
2

Jing Liu, Rachel Fewster, and Ben Stevenson (Inst1)Closed-Form Likelihood Functions for SCR November 28, 2023 2 / 21



Introduction

Estimate population density from ecological survey data

An array of detectors, such as traps, cameras and microphones.

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

x_1

x_
2

Jing Liu, Rachel Fewster, and Ben Stevenson (Inst1)Closed-Form Likelihood Functions for SCR November 28, 2023 2 / 21



Introduction

Assumption I

We assume that animals are, or can be, uniquely marked, and that
they are identified as marked when detected.

4
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Introduction

Assumption I

We assume that animals are, or can be, uniquely marked, and that
they are identified as marked when detected.
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Introduction

Data

In its simplest form, our survey data typically look like the following.

Animal
ID

Animal
Name

Binary Capture History at each Detector
d1 d2 d3 d4 d5 d6 d7

(-1,-1) (0,-1) (1,-1) (-1,0) (0,0) (1,0) (-1,1)

1 Homer 1 1 0 1 1 1 0
2 Marge 1 1 0 1 0 0 1
3 Lisa 1 1 1 0 0 1 1
4 Bart 0 0 0 1 1 1 0

...

N − 3 Burns 0 0 0 0 1 0 0
N − 2 Apu 0 1 0 1 0 1 1
N − 1 Krusty 1 0 0 1 1 0 1
N Moe 1 1 1 0 1 0 0

Table: Capture History
Jing Liu, Rachel Fewster, and Ben Stevenson (Inst1)Closed-Form Likelihood Functions for SCR November 28, 2023 4 / 21



Introduction

Data

In its simplest form, our survey data typically look like the following.

Animal
ID

Animal
Name

Binary Capture History at each Detector
d1 d2 d3 d4 d5 d6 d7

(-1,-1) (0,-1) (1,-1) (-1,0) (0,0) (1,0) (-1,1)

1 Homer 1 1 0 1 1 1 0
2 Marge 1 1 0 1 0 0 1
3 Lisa 1 1 1 0 0 1 1
4 Bart 0 0 0 1 1 1 0

...

N − 3 Burns 0 0 0 0 1 0 0
N − 2 Apu 0 1 0 1 0 1 1
N − 1 Krusty 1 0 0 1 1 0 1
N Moe 1 1 1 0 1 0 0

Table: Capture History
Jing Liu, Rachel Fewster, and Ben Stevenson (Inst1)Closed-Form Likelihood Functions for SCR November 28, 2023 4 / 21



Formulation

Locations

Let s denote the location of Homer and x the location of a detector.
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Formulation

Detection Function
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Formulation

Spatial Capture-Recapture (SCR)

Spatial capture–recapture models are hierarchical.

ϕ

si

i = 1, . . . , N

θ

ωij

j = 1, . . . ,m
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ϕ
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ωij
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fs(S | ϕ); This is a Poisson process model

for the number N and location S
of the N individuals in the population.
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θ

ωij

j = 1, . . . ,m

fs(S | ϕ); This is a Poisson process model

for the number N and location S
of the N individuals in the population.

This is the parameters

in the detection function

fΩ (Ω | S,X, θ); This is the probability model for the capture histories Ω,

given individuals’ locations, S and detectors’ locations, X.
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Formulation

Unusual Scenario-Complete data

If all N individuals were detected, given the locations S and X, then

fΩ (Ω | S,θ)

=

N∏
i=1

m∏
j=1

fω (ωij | si,xj ,θ)

=
N∏
i=1

m∏
j=1

g
ωij

j · (1− gj)
1−ωij

where θ = (g0, σ
2),

and gj = g0 exp

(
−∥si − xj∥2

2σ2

)
.

Assume independence between individuals and detectors.

Recall the capture history is binary,

and the detection is halfnormal.
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Formulation

Assumption II

If we force the Poisson point process to be homogeneous, then θ = D,

fs (S | D) =
(D ·A)N exp (−D ·A)

N !

N∏
i=1

1

A

=
DN exp (−D ·A)

N !

where D is the density of animals in the survey region of size A.

Conditioning on location S, we have the following likelihood

Lc = fs (S | D) · fΩ (Ω | S,θ)

=
DN exp (−D ·A)

N !

N∏
i=1

m∏
j=1

g
ωij

j · (1− gj)
1−ωij

which is known as complete-data likelihood (King et al, 2016).
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Formulation

Latent variable

Of course, the location si in practice is a latent variable,

Lc =
DN exp (−D ·A)

N !

N∏
i=1

m∏
j=1

g
ωij

j · (1− gj)
1−ωij

where gj = g0 exp

(
−∥si − xj∥2

2σ2

)
.

We have to marginalise over s before we can estimate D, g0 and σ.∫
R2

∫
R2

· · ·
∫
R2

Lc (θ;Ω,S,X, N) d2s1d
2s2 · · · d2sN

=
DN exp (−D ·A)

N !

N∏
i=1

∫
R2

m∏
j=1

g
ωij

j · (1− gj)
1−ωij d2s
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Formulation

Unobserved animals

Of course, some animal would evade detection, then the following

m∏
j=1

(1− gj) =

m∏
j=1

{
1− g0 exp

(
−∥s− xj∥2

2σ2

)}
(1)

gives the probability of an animal at s evades detection from all traps.

The probability of the animal at s detected by at least one detector is

p(s) = 1−
m∏
j=1

(
1− gj (s)

)
(2)

Integrating p over s gives the total probability of detecting an animal.

Fesa

(
g0, σ

2,X
)
= 1−

∫
R2

m∏
j=1

(
1− gj (s)

)
d2s (3)
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Formulation

Truncation and thinning

In this case, we have the conditional probability of observing capture
history Ω conditioning on detecting n number of individuals.

fΩ (Ω | S,θ) =
n∏

i=1

m∏
j=1

gj (s)
ωij · (1− gj (s))

1−ωij

Fesa
(4)

And instead of working with a Poisson point process for the number
of animals, we have to work with the point process for the number of
detected animals, which is also Poisson,

L =
Dn exp (−D · Fesa)

n!

n∏
i=1

∫
R2

m∏
j=1

g
ωij

j · (1− gj)
1−ωij d2s (5)
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Solution

Notation

We need to solve two integrals before obtaining the closed-form likelihood,

L =
Dn exp (−D · Fesa)

n!

n∏
i=1

∫
R2

m∏
j=1

g
ωij

j · (1− gj)
1−ωij d2s (6)

Let [m] = {1, 2, · · · ,m} denote the set of the first m natural numbers, and

Sk = {B ∈ P ([m]) | |B| = k}

where P ([m]) is the set of all subsets of [m] and |B| is the size of the set B.

That is, Sk is the set of all k-combinations of [m], e.g., if m = 3, then

S1 =
{
{1}, {2}, {3}

}
S2 =

{
{1, 2}, {1, 3}, {2, 3}

}
S3 =

{
{1, 2, 3}

}
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S1 =
{
{1}, {2}, {3}

}
S2 =

{
{1, 2}, {1, 3}, {2, 3}

}
S3 =

{
{1, 2, 3}

}
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Solution

The halfnormal detection function is separable,

gj = g0 exp

[
−∥s− xj∥2

2σ2

]
, for j = 1, . . . , nd, (7)

=
√
g0 exp

[
− (s1 − x1j)

2

2σ2

]
︸ ︷︷ ︸

aj

·√g0 exp

[
− (s2 − x2j)

2

2σ2

]
︸ ︷︷ ︸

bj

= aj · bj

(8)

Converting POS to SOP in the following, we have

Fesa = 1−
∫
R

m∏
j=1

(1− gj) d
2s (9)

= 1− 1−
∫
R

m∑
k=1

∑
B∈Sk

(−1)k
∏
j∈B

gj d
2s

(10)

= −
m∑

k=1

∑
B∈Sk

(−1)k
∫
R

∏
j∈B

aj · bj d2s

︸ ︷︷ ︸
Separable

(11)
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Solution

How can we interpret this result?

Let us use the case m = 3,

S1 =
{
{1}, {2}, {3}

}
;S2 =

{
{1, 2}, {1, 3}, {2, 3}

}
;S3 =

{
{1, 2, 3}

}

and Ei be the event that the animal is detected by detector i

Fesa = P(An animal is detected)

=

∫
R

1−
3∏

j=1

(
1− gj (s)

)
d2s

= −
3∑

k=1

∑
B∈Sk

(−1)k
∫
R

∏
j∈B

aj · bj d2s

P

 3⋃
j=1

Ei

 =
3∑

i=1

P (Ei)−
∑

i,j∈S3;i ̸=j

P (Ei ∩ Ej) + P (E1 ∩ E2 ∩ E3)
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Solution

Reducing double to single by separating the integrals, we have∫
R

∏
j∈B

gj d
2s =

∫
R

∏
j∈B

aj ds1

︸ ︷︷ ︸
αB

·
∫
R

∏
j∈B

bj ds2

︸ ︷︷ ︸
βB

(12)

where αB and βB can be found, by using integration by parts, regrouping,
and results in Gaussian integrals, which lead us to the following form

γB =

∫
R2

∏
j∈B

gj d
2s = g

|B|
0 exp

[
|B|
2σ2

(
∥cB∥2 − µB

)] 2πσ2

|B|
(13)

The term cB denotes the centroid of detectors defined by the set B and µB
denotes the mean squared Euclidean norm of the detector coordinates

µB =
1

|B|
∑
j∈B

∥xj∥2 (14)
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Solution

Detection integral

The other type of integrals can be found in a similar way

L =
Dn exp (−D · Fesa)

n!

n∏
i=1

∫
R2

m∏
j=1

g
ωij

j · (1− gj)
1−ωij d2s

=
Dn

n!
· exp (−DFesa) · Fdet

(15)

where Fdet is again separable with respect to each sj due to independence,

Fdet

=

n∏
i=1

∫
R2

m∏
j=1

g
ωij

j · (1− gj)
1−ωij d2s

(16)

which means we never need to deal with any integral in high dimension.
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Solution

Let Ni = {j ∈ [m] | ωij = 0}, the set of detector(s) fail to detect animal i.

and SNi

k denote the set of all k-combinations of Ni, that is

SNi

k = {B ∈ P (Ni) | |B| = k} (17)

where P (Ni) denotes the set of all subsets of Ni.

Furthermore, let

N ′
i = {j ∈ [m] | ωij = 1} (18)

For example, if m = 5 and ωj = (1, 1, 0, 0, 0),

then

Ni = {3, 4, 5}

N ′
i = {1, 2}

SNi
1 =

{
{3}, {4}, {5}

}
SNi
2 =

{
{3, 4}, {3, 5}, {4, 5}

}
SNi
3 =

{
{3, 4, 5}

}
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k = {B ∈ P (Ni) | |B| = k} (17)

where P (Ni) denotes the set of all subsets of Ni. Furthermore, let

N ′
i = {j ∈ [m] | ωij = 1} (18)

For example, if m = 5 and ωj = (1, 1, 0, 0, 0), then

Ni = {3, 4, 5}

N ′
i = {1, 2}

SNi
1 =

{
{3}, {4}, {5}

}
SNi
2 =

{
{3, 4}, {3, 5}, {4, 5}

}
SNi
3 =

{
{3, 4, 5}

}
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Solution

Using the above notation and a similar strategy, we can rewrite

Fdet =

n∏
i=1

∫
R2

m∏
j=1

g
ωij

j (1− gj)
1−ωij d2s (19)

=

n∏
i=1

∫
R2

 ∏
j∈N ′

i

gj

 ∏
j∈Ni

(1− gj)

 d2s

(20)

=

n∏
i=1

(Wi + Vi)

(21)

where

Wi =

∫
R2

∏
j∈N ′

i

gj d
2s = γN ′

i
(22)

Vi =

|Ni|∑
k=1

∑
B∈SNi

k

(−1)k
∫
R2

∏
j∈B∪N ′

i

gj d
2s =

|Ni|∑
k=1

∑
B∈SNi

k

(−1)kγB∪N ′
i

(23)
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Solution

Closed-form marginal likelihood

The marginal semi-complete-data likelihood with half-normal detection function,

Lsc (θ;Ω,X, n) =
Dn exp (−D · Fesa)

n!
· Fdetn (24)

=
Dn

n!
exp

(
D ·

m∑
k=1

∑
B∈Sk

(−1)kγB

)
·

n∏
i=1

γN ′
i
+

|Ni|∑
k=1

∑
B∈SNi

k

(−1)kγB∪N ′
i

 (25)

where

γB = g
|B|
0 exp

[
|B|
2σ2

(
∥cB∥2 − µB

)] 2πσ2

|B|
(26)

and the term cB denotes the centroid of detectors defined by the set B and µB
denotes the mean squared Euclidean norm of the detector coordinates
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Solution

Thank you!
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