Closed-Form Likelihood Functions for SCR

Jing Liu^{*}, Rachel Fewster^{*}, and Ben Stevenson^{*}

¹https://www.roamingowls.com

Jing Liu, Rachel Fewster, and Ben Stevenson Closed-Form Likelihood Functions for SCR

• An array of detectors, such as traps, cameras and microphones.

¹https://www.roamingowls.com

Jing Liu, Rachel Fewster, and Ben Stevenson Closed-Form Likelihood Functions for SCR

• An array of detectors, such as traps, cameras and microphones.

2/21

²https://www.naturettl.com

• An array of detectors, such as traps, cameras and microphones.

³https://stock.adobe.com

⁴Image credits: Ilia Shalamaev

Jing Liu, Rachel Fewster, and Ben Stevenson Closed-Form Likelihood Functions for SCR

- ∢ ≣ ▶

Image: A matrix

æ

• We assume that animals are, or can be, uniquely marked, and that they are identified as marked when detected.

⁴Image credits: Ilia Shalamaev

• We assume that animals are, or can be, uniquely marked, and that they are identified as marked when detected.

⁴Image credits: Ilia Shalamaev

• We assume that animals are, or can be, uniquely marked, and that they are identified as marked when detected.

• We assume that animals are, or can be, uniquely marked, and that they are identified as marked when detected.

3/21

• We assume that animals are, or can be, uniquely marked, and that they are identified as marked when detected.

Data

• In its simplest form, our survey data typically look like the following.

Animal ID	Animal Name	Binary Capture History at each Detector							
		d1	d2	d3	d4	d5	d6	d7	
		(-1,-1)	(0,-1)	(1, -1)	(-1,0)	(0,0)	(1,0)	(-1,1)	
1	Homer	1	1	0	1	1	1	0	
2	Marge	1	1	0	1	0	0	1	
3	Lisa	1	1	1	0	0	1	1	
4	Bart	0	0	0	1	1	1	0	
				:					
$\overline{N} - \overline{3}$	Burns		0	0		1	0	0	
N-2	Apu	0	1	0	1	0	1	1	
N-1	Krusty	1	0	0	1	1	0	1	
N	Moe	1	1	1	0	1	0	0	

Table: Capture History

æ

Data

• In its simplest form, our survey data typically look like the following.

Animal ID	Animal Name	Binary Capture History at each Detector							
		d1	d2	d3	d4	d5	d6	d7	
		(-1, -1)	(0,-1)	(1,-1)	(-1,0)	(0,0)	(1,0)	(-1,1)	
1	Homer	1	1	0	1	1	1	0	
2	Marge	1	1	0	1	0	0	1	
3	Lisa	1	1	1	0	0	1	1	
4	Bart	0	0	0	1	1	1	0	
				:					
$\overline{N-3}$	Burns	0	0	0		1	0	0	
N-2	Apu	0	1	0	1	0	1	1	
N-1	Krusty	1	0	0	1	1	0	1	
N	Moe	1	1	1	0	1	0	0	

Table: Capture History

æ

Detection Function

6/21

• Spatial capture-recapture models are hierarchical.

 $f_{\Omega}(\Omega \mid \mathbf{S}, \mathbf{X}, \theta)$; This is the probability model for the capture histories Ω , given individuals' locations, **S** and detectors' locations, **X**.

 \bullet If all N individuals were detected, given the locations ${\bf S}$ and ${\bf X},$ then

 $f_{\Omega}\left(\Omega \mid \mathbf{S}, \boldsymbol{\theta}\right)$

 \bullet If all N individuals were detected, given the locations ${\bf S}$ and ${\bf X},$ then

$$f_{\Omega}\left(\Omega \mid \mathbf{S}, \boldsymbol{\theta}\right) = \prod_{i=1}^{N} \prod_{j=1}^{m} f_{\omega}\left(\omega_{ij} \mid \mathbf{s}_{i}, \mathbf{x}_{j}, \boldsymbol{\theta}\right)$$

where
$$\boldsymbol{\theta} = (g_0, \sigma^2)$$
,

Assume independence between individuals and detectors.

• If all N individuals were detected, given the locations ${f S}$ and ${f X}$, then

$$f_{\Omega}\left(\Omega \mid \mathbf{S}, \boldsymbol{\theta}\right) = \prod_{i=1}^{N} \prod_{j=1}^{m} f_{\omega}\left(\omega_{ij} \mid \mathbf{s}_{i}, \mathbf{x}_{j}, \boldsymbol{\theta}\right)$$

where $\boldsymbol{\theta} = (g_0, \sigma^2)$,

- Assume independence between individuals and detectors.
- Recall the capture history is binary,

• If all N individuals were detected, given the locations ${f S}$ and ${f X}$, then

$$f_{\Omega} \left(\Omega \mid \mathbf{S}, \boldsymbol{\theta} \right) = \prod_{i=1}^{N} \prod_{j=1}^{m} f_{\omega} \left(\omega_{ij} \mid \mathbf{s}_{i}, \mathbf{x}_{j}, \boldsymbol{\theta} \right)$$
$$= \prod_{i=1}^{N} \prod_{j=1}^{m} g_{j}^{\omega_{ij}} \cdot (1 - g_{j})^{1 - \omega_{ij}}$$

where $\boldsymbol{\theta} = (g_0, \sigma^2)$,

- Assume independence between individuals and detectors.
- Recall the capture history is binary,

• If all N individuals were detected, given the locations ${f S}$ and ${f X}$, then

$$f_{\Omega} \left(\Omega \mid \mathbf{S}, \boldsymbol{\theta} \right) = \prod_{i=1}^{N} \prod_{j=1}^{m} f_{\omega} \left(\omega_{ij} \mid \mathbf{s}_{i}, \mathbf{x}_{j}, \boldsymbol{\theta} \right)$$
$$= \prod_{i=1}^{N} \prod_{j=1}^{m} g_{j}^{\omega_{ij}} \cdot \left(1 - g_{j} \right)^{1 - \omega_{ij}}$$

where
$$\boldsymbol{\theta} = (g_0, \sigma^2)$$
, and $g_j = g_0 \exp\left(-\frac{\|\mathbf{s}_i - \mathbf{x}_j\|^2}{2\sigma^2}\right)$.

- Assume independence between individuals and detectors.
- Recall the capture history is binary, and the detection is halfnormal.

8/21

• If we force the Poisson point process to be homogeneous, then $\theta = D$,

$$f_s\left(\mathbf{S} \mid D\right) = \frac{\left(D \cdot A\right)^N \exp\left(-D \cdot A\right)}{N!} \prod_{i=1}^N \frac{1}{A}$$

• If we force the Poisson point process to be homogeneous, then $\theta = D$,

$$f_s\left(\mathbf{S} \mid D\right) = \frac{\left(D \cdot A\right)^N \exp\left(-D \cdot A\right)}{N!} \prod_{i=1}^N \frac{1}{A}$$

where D is the density of animals in the survey region of size A.
Assumption II

• If we force the Poisson point process to be homogeneous, then $\theta=D,$

$$f_s(\mathbf{S} \mid D) = \frac{(D \cdot A)^N \exp(-D \cdot A)}{N!} \prod_{i=1}^N \frac{1}{A} = \frac{D^N \exp(-D \cdot A)}{N!}$$

where D is the density of animals in the survey region of size A.

Assumption II

 $\bullet\,$ If we force the Poisson point process to be homogeneous, then $\theta=D,$

$$f_s(\mathbf{S} \mid D) = \frac{(D \cdot A)^N \exp(-D \cdot A)}{N!} \prod_{i=1}^N \frac{1}{A} = \frac{D^N \exp(-D \cdot A)}{N!}$$

where D is the density of animals in the survey region of size A. • Conditioning on location **S**, we have the following likelihood

$$\mathcal{L}^{c} = f_{s} \left(\mathbf{S} \mid D \right) \cdot f_{\Omega} \left(\Omega \mid \mathbf{S}, \boldsymbol{\theta} \right)$$
$$= \frac{D^{N} \exp\left(-D \cdot A\right)}{N!} \prod_{i=1}^{N} \prod_{j=1}^{m} g_{j}^{\omega_{ij}} \cdot \left(1 - g_{j}\right)^{1 - \omega_{ij}}$$

which is known as complete-data likelihood (King et al, 2016).

Latent variable

• Of course, the location s_i in practice is a latent variable,

$$\mathcal{L}^{c} = \frac{D^{N} \exp\left(-D \cdot A\right)}{N!} \prod_{i=1}^{N} \prod_{j=1}^{m} g_{j}^{\omega_{ij}} \cdot (1 - g_{j})^{1 - \omega_{ij}}$$

where
$$g_j = g_0 \exp\left(-\frac{\|\mathbf{s}_i - \mathbf{x}_j\|^2}{2\sigma^2}\right)$$
.

э

Latent variable

• Of course, the location \mathbf{s}_i in practice is a latent variable,

$$\mathcal{L}^{c} = \frac{D^{N} \exp\left(-D \cdot A\right)}{N!} \prod_{i=1}^{N} \prod_{j=1}^{m} g_{j}^{\omega_{ij}} \cdot (1 - g_{j})^{1 - \omega_{ij}}$$

where
$$g_j = g_0 \exp\left(-\frac{\|\mathbf{s}_i - \mathbf{x}_j\|^2}{2\sigma^2}\right)$$
.

• We have to marginalise over s before we can estimate D, g_0 and σ .

$$\int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \cdots \int_{\mathbb{R}^2} \mathcal{L}^c \left(\boldsymbol{\theta}; \boldsymbol{\Omega}, \mathbf{S}, \mathbf{X}, N\right) \, d^2 \mathbf{s}_1 d^2 \mathbf{s}_2 \cdots d^2 \mathbf{s}_N$$
$$= \frac{D^N \exp\left(-D \cdot A\right)}{N!} \prod_{i=1}^N \int_{\mathbb{R}^2} \prod_{j=1}^m g_j^{\omega_{ij}} \cdot (1 - g_j)^{1 - \omega_{ij}} \, d^2 \mathbf{s}_j$$

Unobserved animals

• Of course, some animal would evade detection, then the following

$$\prod_{j=1}^{m} (1 - g_j) = \prod_{j=1}^{m} \left\{ 1 - g_0 \exp\left(-\frac{\|\mathbf{s} - \mathbf{x}_j\|^2}{2\sigma^2}\right) \right\}$$
(1)

gives the probability of an animal at s evades detection from all traps.

Unobserved animals

Of course, some animal would evade detection, then the following

$$\prod_{j=1}^{m} (1 - g_j) = \prod_{j=1}^{m} \left\{ 1 - g_0 \exp\left(-\frac{\|\mathbf{s} - \mathbf{x}_j\|^2}{2\sigma^2}\right) \right\}$$
(1)

gives the probability of an animal at s evades detection from all traps.The probability of the animal at s detected by at least one detector is

$$p(\mathbf{s}) = 1 - \prod_{j=1}^{m} \left(1 - g_j(\mathbf{s}) \right)$$
(2)

Unobserved animals

• Of course, some animal would evade detection, then the following

$$\prod_{j=1}^{m} (1 - g_j) = \prod_{j=1}^{m} \left\{ 1 - g_0 \exp\left(-\frac{\|\mathbf{s} - \mathbf{x}_j\|^2}{2\sigma^2}\right) \right\}$$
(1)

gives the probability of an animal at s evades detection from all traps.The probability of the animal at s detected by at least one detector is

$$p(\mathbf{s}) = 1 - \prod_{j=1}^{m} \left(1 - g_j(\mathbf{s}) \right)$$
(2)

• Integrating p over s gives the total probability of detecting an animal.

$$F_{\mathsf{esa}}\left(g_{0},\sigma^{2},\mathbf{X}\right) = 1 - \int_{\mathbb{R}^{2}} \prod_{j=1}^{m} \left(1 - g_{j}\left(\mathbf{s}\right)\right) d^{2}\mathbf{s}$$
(3)

Truncation and thinning

 In this case, we have the conditional probability of observing capture history Ω conditioning on detecting n number of individuals.

$$f_{\Omega}\left(\Omega \mid \mathbf{S}, \boldsymbol{\theta}\right) = \prod_{i=1}^{n} \prod_{j=1}^{m} \frac{g_{j}\left(\mathbf{s}\right)^{\omega_{ij}} \cdot \left(1 - g_{j}\left(\mathbf{s}\right)\right)^{1 - \omega_{ij}}}{F_{\mathsf{esa}}}$$
(4)

 And instead of working with a Poisson point process for the number of animals, we have to work with the point process for the number of detected animals, which is also Poisson,

$$\mathcal{L} = \frac{D^n \exp\left(-D \cdot F_{\mathsf{esa}}\right)}{n!} \prod_{i=1}^n \int_{\mathbb{R}^2} \prod_{j=1}^m g_j^{\omega_{ij}} \cdot \left(1 - g_j\right)^{1 - \omega_{ij}} d^2 \mathbf{s} \quad (5)$$

Notation

• We need to solve two integrals before obtaining the closed-form likelihood,

$$\mathcal{L} = \frac{D^n \exp\left(-D \cdot F_{\mathsf{esa}}\right)}{n!} \prod_{i=1}^n \int_{\mathbb{R}^2} \prod_{j=1}^m g_j^{\omega_{ij}} \cdot (1-g_j)^{1-\omega_{ij}} d^2 \mathbf{s}$$
(6)

æ

Notation

• We need to solve two integrals before obtaining the closed-form likelihood,

$$\mathcal{L} = \frac{D^n \exp\left(-D \cdot F_{\mathsf{esa}}\right)}{n!} \prod_{i=1}^n \int_{\mathbb{R}^2} \prod_{j=1}^m g_j^{\omega_{ij}} \cdot (1-g_j)^{1-\omega_{ij}} d^2 \mathbf{s}$$
(6)

æ

Notation

We need to solve two integrals before obtaining the closed-form likelihood,

$$\mathcal{L} = \frac{D^n \exp\left(-D \cdot F_{\mathsf{esa}}\right)}{n!} \prod_{i=1}^n \int_{\mathbb{R}^2} \prod_{j=1}^m g_j^{\omega_{ij}} \cdot (1-g_j)^{1-\omega_{ij}} d^2 \mathbf{s}$$
(6)

 $\bullet~ {\rm Let}~ [m] = \{1,2,\cdots,m\}$ denote the set of the first m natural numbers, and

$$\mathcal{S}_{k} = \{ \mathcal{B} \in \mathcal{P}\left([m]\right) \mid |\mathcal{B}| = k \}$$

where $\mathcal{P}([m])$ is the set of all subsets of [m] and $|\mathcal{B}|$ is the size of the set \mathcal{B} .

Notation

We need to solve two integrals before obtaining the closed-form likelihood,

$$\mathcal{L} = \frac{D^n \exp\left(-D \cdot F_{\mathsf{esa}}\right)}{n!} \prod_{i=1}^n \int_{\mathbb{R}^2} \prod_{j=1}^m g_j^{\omega_{ij}} \cdot \left(1 - g_j\right)^{1 - \omega_{ij}} d^2 \mathbf{s} \qquad (6)$$

 $\bullet~ {\rm Let}~ [m] = \{1,2,\cdots,m\}$ denote the set of the first m natural numbers, and

$$\mathcal{S}_{k} = \{ \mathcal{B} \in \mathcal{P}\left([m]\right) \mid |\mathcal{B}| = k \}$$

where $\mathcal{P}([m])$ is the set of all subsets of [m] and $|\mathcal{B}|$ is the size of the set \mathcal{B} . • That is, \mathcal{S}_k is the set of all k-combinations of [m], e.g., if m = 3, then

$$S_1 = \{\{1\}, \{2\}, \{3\}\} \\ S_2 = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\} \\ S_3 = \{\{1, 2, 3\}\}$$

• The halfnormal detection function is separable,

$$g_j = g_0 \exp\left[-\frac{\|\mathbf{s} - \mathbf{x}_j\|^2}{2\sigma^2}\right], \quad \text{for } j = 1, \dots, n_d,$$
(7)

(8)

æ

э

- (日)

• The halfnormal detection function is separable,

$$g_{j} = g_{0} \exp\left[-\frac{\|\mathbf{s} - \mathbf{x}_{j}\|^{2}}{2\sigma^{2}}\right], \quad \text{for } j = 1, \dots, n_{d}, \tag{7}$$
$$= \underbrace{\sqrt{g_{0}} \exp\left[-\frac{(s_{1} - x_{1j})^{2}}{2\sigma^{2}}\right]}_{a_{j}} \cdot \underbrace{\sqrt{g_{0}} \exp\left[-\frac{(s_{2} - x_{2j})^{2}}{2\sigma^{2}}\right]}_{b_{j}} = a_{j} \cdot b_{j} \tag{8}$$

æ

э

- (日)

• The halfnormal detection function is separable,

$$g_j = g_0 \exp\left[-\frac{\|\mathbf{s} - \mathbf{x}_j\|^2}{2\sigma^2}\right], \quad \text{for } j = 1, \dots, n_d, \tag{7}$$

$$=\underbrace{\sqrt{g_0}\exp\left[-\frac{(s_1-x_{1j})^2}{2\sigma^2}\right]}_{a_j}\cdot\underbrace{\sqrt{g_0}\exp\left[-\frac{(s_2-x_{2j})^2}{2\sigma^2}\right]}_{b_j}=a_j\cdot b_j \qquad (8)$$

• Converting POS to SOP in the following, we have

$$F_{\text{esa}} = 1 - \int_{\mathcal{R}} \prod_{j=1}^{m} \left(1 - g_j\right) \, d^2 \mathbf{s} \tag{9}$$

(10)

(11)

э

• The halfnormal detection function is separable,

$$g_j = g_0 \exp\left[-\frac{\|\mathbf{s} - \mathbf{x}_j\|^2}{2\sigma^2}\right], \quad \text{for } j = 1, \dots, n_d, \tag{7}$$

$$=\underbrace{\sqrt{g_0}\exp\left[-\frac{(s_1-x_{1j})^2}{2\sigma^2}\right]}_{a_j}\cdot\underbrace{\sqrt{g_0}\exp\left[-\frac{(s_2-x_{2j})^2}{2\sigma^2}\right]}_{b_j}=a_j\cdot b_j \qquad (8)$$

• Converting POS to SOP in the following, we have

$$F_{\text{esa}} = 1 - \int_{\mathcal{R}} \prod_{j=1}^{m} \left(1 - g_j\right) \, d^2 \mathbf{s} \tag{9}$$

$$= 1 - 1 - \int_{\mathcal{R}} \sum_{k=1}^{m} \sum_{\mathcal{B} \in \mathcal{S}_k} (-1)^k \prod_{j \in \mathcal{B}} g_j \, d^2 \mathbf{s}$$
(10)

(11)

• The halfnormal detection function is separable,

$$g_j = g_0 \exp\left[-\frac{\|\mathbf{s} - \mathbf{x}_j\|^2}{2\sigma^2}\right], \quad \text{for } j = 1, \dots, n_d, \tag{7}$$

$$=\underbrace{\sqrt{g_0} \exp\left[-\frac{(s_1 - x_{1j})^2}{2\sigma^2}\right]}_{a_j} \cdot \underbrace{\sqrt{g_0} \exp\left[-\frac{(s_2 - x_{2j})^2}{2\sigma^2}\right]}_{b_j} = a_j \cdot b_j \quad (8)$$

• Converting POS to SOP in the following, we have

$$F_{\text{esa}} = 1 - \int_{\mathcal{R}} \prod_{j=1}^{m} (1 - g_j) d^2 \mathbf{s}$$
(9)

$$=1-1-\int_{\mathcal{R}}\sum_{k=1}^{m}\sum_{\mathcal{B}\in\mathcal{S}_{k}}(-1)^{k}\prod_{j\in\mathcal{B}}g_{j}\,d^{2}\mathbf{s}$$
(10)

$$= -\sum_{k=1}^{m} \sum_{\mathcal{B} \in \mathcal{S}_{k}} (-1)^{k} \underbrace{\int_{\mathcal{R}} \prod_{j \in \mathcal{B}} a_{j} \cdot b_{j} d^{2} \mathbf{s}}_{\mathcal{R}}$$
(11)

Separable

< 一 →

표 제 표

14 / 21

• Let us use the case
$$m = 3$$
,

$$\mathcal{S}_1 = \{\{1\}, \{2\}, \{3\}\}; \mathcal{S}_2 = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}; \mathcal{S}_3 = \{\{1, 2, 3\}\}$$

æ

э

• Let us use the case
$$m = 3$$
,

$$\mathcal{S}_1 = \{\{1\}, \{2\}, \{3\}\}; \mathcal{S}_2 = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}; \mathcal{S}_3 = \{\{1, 2, 3\}\}$$

and E_i be the event that the animal is detected by detector i

• Let us use the case
$$m = 3$$
,

$$S_1 = \{\{1\}, \{2\}, \{3\}\}; S_2 = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}; S_3 = \{\{1, 2, 3\}\}$$

and E_i be the event that the animal is detected by detector i

 $F_{\text{esa}} = P (An \text{ animal is detected})$

• Let us use the case
$$m = 3$$
,

$$S_1 = \{\{1\}, \{2\}, \{3\}\}; S_2 = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}; S_3 = \{\{1, 2, 3\}\}$$

and E_i be the event that the animal is detected by detector i

 $F_{\text{esa}} = P(An \text{ animal is detected})$

$$= \int_{\mathcal{R}} 1 - \prod_{j=1}^{3} \left(1 - g_j \left(\mathbf{s} \right) \right) d^2 \mathbf{s}$$

• Let us use the case
$$m = 3$$
,

$$S_1 = \{\{1\}, \{2\}, \{3\}\}; S_2 = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}; S_3 = \{\{1, 2, 3\}\}$$

and E_i be the event that the animal is detected by detector i

 $F_{\text{esa}} = P (An \text{ animal is detected})$

$$= \int_{\mathcal{R}} 1 - \prod_{j=1}^{3} \left(1 - g_j(\mathbf{s}) \right) d^2 \mathbf{s}$$
$$= -\sum_{k=1}^{3} \sum_{\mathcal{B} \in \mathcal{S}_k} (-1)^k \int_{\mathcal{R}} \prod_{j \in \mathcal{B}} a_j \cdot b_j d^2 \mathbf{s}$$

• Let us use the case
$$m = 3$$
,

$$S_1 = \{\{1\}, \{2\}, \{3\}\}; S_2 = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}; S_3 = \{\{1, 2, 3\}\}$$

and E_i be the event that the animal is detected by detector i

 $F_{\text{esa}} = P (An \text{ animal is detected})$

$$= \int_{\mathcal{R}} 1 - \prod_{j=1}^{3} \left(1 - g_j(\mathbf{s}) \right) d^2 \mathbf{s}$$
$$= -\sum_{k=1}^{3} \sum_{\mathcal{B} \in \mathcal{S}_k} (-1)^k \int_{\mathcal{R}} \prod_{j \in \mathcal{B}} a_j \cdot b_j d^2 \mathbf{s}$$
$$P\left(\bigcup_{j=1}^{3} E_i\right)$$

• Let us use the case
$$m = 3$$
,

$$S_1 = \{\{1\}, \{2\}, \{3\}\}; S_2 = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}; S_3 = \{\{1, 2, 3\}\}$$

and E_i be the event that the animal is detected by detector i

 $F_{\text{esa}} = P \left(\text{An animal is detected}
ight)$ = $\int 1 - \prod^{3} \left(1 - q_i(\mathbf{s}) \right) d^2 \mathbf{s}$

$$P\left(\bigcup_{j=1}^{3} E_{i}\right) = \sum_{i=1}^{3} P\left(E_{i}\right) - \sum_{i,j \in \mathcal{S}_{3}; i \neq j}^{3} P\left(E_{i} \cap E_{j}\right) + P\left(E_{1} \cap E_{2} \cap E_{3}\right)$$

• Reducing double to single by separating the integrals, we have

$$\int_{\mathcal{R}} \prod_{j \in \mathcal{B}} g_j d^2 \mathbf{s} = \int_{\mathcal{R}} \prod_{j \in \mathcal{B}} a_j ds_1 \cdot \int_{\mathcal{R}} \prod_{j \in \mathcal{B}} b_j ds_2 \qquad (12)$$

э

• Reducing double to single by separating the integrals, we have

$$\int_{\mathcal{R}} \prod_{j \in \mathcal{B}} g_j d^2 \mathbf{s} = \int_{\mathcal{R}} \prod_{j \in \mathcal{B}} a_j ds_1 \cdot \int_{\mathcal{R}} \prod_{j \in \mathcal{B}} b_j ds_2 \qquad (12)$$

where $\alpha_{\mathcal{B}}$ and $\beta_{\mathcal{B}}$ can be found, by using integration by parts, regrouping, and results in Gaussian integrals, which lead us to the following form

$$\gamma_{\mathcal{B}} = \int_{\mathbb{R}^2} \prod_{j \in \mathcal{B}} g_j \, d^2 \mathbf{s} = g_0^{|\mathcal{B}|} \exp\left[\frac{|\mathcal{B}|}{2\sigma^2} \left(\|\mathbf{c}_{\mathcal{B}}\|^2 - \mu_{\mathcal{B}}\right)\right] \frac{2\pi\sigma^2}{|\mathcal{B}|} \tag{13}$$

• Reducing double to single by separating the integrals, we have

$$\int_{\mathcal{R}} \prod_{j \in \mathcal{B}} g_j d^2 \mathbf{s} = \int_{\mathcal{R}} \prod_{j \in \mathcal{B}} a_j ds_1 \cdot \int_{\mathcal{R}} \prod_{j \in \mathcal{B}} b_j ds_2 \qquad (12)$$

where $\alpha_{\mathcal{B}}$ and $\beta_{\mathcal{B}}$ can be found, by using integration by parts, regrouping, and results in Gaussian integrals, which lead us to the following form

$$\gamma_{\mathcal{B}} = \int_{\mathbb{R}^2} \prod_{j \in \mathcal{B}} g_j \, d^2 \mathbf{s} = g_0^{|\mathcal{B}|} \exp\left[\frac{|\mathcal{B}|}{2\sigma^2} \left(\|\mathbf{c}_{\mathcal{B}}\|^2 - \mu_{\mathcal{B}}\right)\right] \frac{2\pi\sigma^2}{|\mathcal{B}|} \tag{13}$$

• The term $c_{\mathcal{B}}$ denotes the centroid of detectors defined by the set \mathcal{B} and $\mu_{\mathcal{B}}$ denotes the mean squared Euclidean norm of the detector coordinates

$$\mu_{\mathcal{B}} = \frac{1}{|\mathcal{B}|} \sum_{j \in \mathcal{B}} \|\mathbf{x}_j\|^2 \tag{14}$$

• The other type of integrals can be found in a similar way

$$\mathcal{L} = \frac{D^n \exp\left(-D \cdot F_{\mathsf{esa}}\right)}{n!} \prod_{i=1}^n \int_{\mathbb{R}^2} \prod_{j=1}^m g_j^{\omega_{ij}} \cdot (1-g_j)^{1-\omega_{ij}} \ d^2 \mathbf{s}$$

(15)

э

Detection integral

• The other type of integrals can be found in a similar way

$$\mathcal{L} = \frac{D^n \exp\left(-D \cdot F_{\mathsf{esa}}\right)}{n!} \prod_{i=1}^n \int_{\mathbb{R}^2} \prod_{j=1}^m g_j^{\omega_{ij}} \cdot (1 - g_j)^{1 - \omega_{ij}} d^2 \mathbf{s}$$
$$= \frac{D^n}{n!} \cdot \exp\left(-DF_{\mathsf{esa}}\right) \cdot F_{\mathsf{det}} \tag{15}$$

э

• The other type of integrals can be found in a similar way

$$\mathcal{L} = \frac{D^n \exp\left(-D \cdot F_{\text{esa}}\right)}{n!} \prod_{i=1}^n \int_{\mathbb{R}^2} \prod_{j=1}^m g_j^{\omega_{ij}} \cdot (1 - g_j)^{1 - \omega_{ij}} d^2 \mathbf{s}$$
$$= \frac{D^n}{n!} \cdot \exp\left(-DF_{\text{esa}}\right) \cdot F_{\text{det}}$$
(15)

where F_{det} is again separable with respect to each s_j due to independence,

$$F_{det}$$
 (16)

• The other type of integrals can be found in a similar way

$$\mathcal{L} = \frac{D^n \exp\left(-D \cdot F_{\mathsf{esa}}\right)}{n!} \prod_{i=1}^n \int_{\mathbb{R}^2} \prod_{j=1}^m g_j^{\omega_{ij}} \cdot (1 - g_j)^{1 - \omega_{ij}} d^2 \mathbf{s}$$
$$= \frac{D^n}{n!} \cdot \exp\left(-DF_{\mathsf{esa}}\right) \cdot F_{\mathsf{det}}$$
(15)

where F_{det} is again separable with respect to each s_j due to independence,

$$F_{det} = \prod_{i=1}^{n} \int_{\mathbb{R}^2} \prod_{j=1}^{m} g_j^{\omega_{ij}} \cdot (1 - g_j)^{1 - \omega_{ij}} d^2 \mathbf{s}$$
(16)

• The other type of integrals can be found in a similar way

$$\mathcal{L} = \frac{D^n \exp\left(-D \cdot F_{\text{esa}}\right)}{n!} \prod_{i=1}^n \int_{\mathbb{R}^2} \prod_{j=1}^m g_j^{\omega_{ij}} \cdot (1 - g_j)^{1 - \omega_{ij}} d^2 \mathbf{s}$$
$$= \frac{D^n}{n!} \cdot \exp\left(-DF_{\text{esa}}\right) \cdot F_{\text{det}}$$
(15)

where F_{det} is again separable with respect to each s_j due to independence,

$$F_{det} = \prod_{i=1}^{n} \int_{\mathbb{R}^2} \prod_{j=1}^{m} g_j^{\omega_{ij}} \cdot (1 - g_j)^{1 - \omega_{ij}} d^2 \mathbf{s}$$
(16)

which means we never need to deal with any integral in high dimension.

• Let $\mathcal{N}_i = \{j \in [m] \mid \omega_{ij} = 0\}$, the set of detector(s) fail to detect animal *i*.

• Let $\mathcal{N}_i = \{j \in [m] \mid \omega_{ij} = 0\}$, the set of detector(s) fail to detect animal *i*. and $\mathcal{S}_k^{\mathcal{N}_i}$ denote the set of all *k*-combinations of \mathcal{N}_i , that is

$$\mathcal{S}_{k}^{\mathcal{N}_{i}} = \{ \mathcal{B} \in \mathcal{P}\left(\mathcal{N}_{i}\right) \mid |\mathcal{B}| = k \}$$
(17)

• Let $\mathcal{N}_i = \{j \in [m] \mid \omega_{ij} = 0\}$, the set of detector(s) fail to detect animal *i*. and $\mathcal{S}_k^{\mathcal{N}_i}$ denote the set of all *k*-combinations of \mathcal{N}_i , that is

$$\mathcal{S}_{k}^{\mathcal{N}_{i}} = \{ \mathcal{B} \in \mathcal{P}\left(\mathcal{N}_{i}\right) \mid |\mathcal{B}| = k \}$$
(17)

where $\mathcal{P}(\mathcal{N}_i)$ denotes the set of all subsets of \mathcal{N}_i .

• Let $\mathcal{N}_i = \{j \in [m] \mid \omega_{ij} = 0\}$, the set of detector(s) fail to detect animal *i*. and $\mathcal{S}_k^{\mathcal{N}_i}$ denote the set of all *k*-combinations of \mathcal{N}_i , that is

$$\mathcal{S}_{k}^{\mathcal{N}_{i}} = \{ \mathcal{B} \in \mathcal{P}\left(\mathcal{N}_{i}\right) \mid |\mathcal{B}| = k \}$$
(17)

where $\mathcal{P}\left(\mathcal{N}_{i}
ight)$ denotes the set of all subsets of \mathcal{N}_{i} . Furthermore, let

$$\mathcal{N}'_i = \{ j \in [m] \mid \omega_{ij} = 1 \}$$

$$\tag{18}$$
$$\mathcal{S}_{k}^{\mathcal{N}_{i}} = \{ \mathcal{B} \in \mathcal{P}\left(\mathcal{N}_{i}\right) \mid |\mathcal{B}| = k \}$$
(17)

where $\mathcal{P}\left(\mathcal{N}_{i}
ight)$ denotes the set of all subsets of \mathcal{N}_{i} . Furthermore, let

$$\mathcal{N}'_i = \{ j \in [m] \mid \omega_{ij} = 1 \}$$

$$\tag{18}$$

• For example, if m=5 and $\pmb{\omega}_j=(1,1,0,0,0)$,

$$\mathcal{S}_{k}^{\mathcal{N}_{i}} = \{ \mathcal{B} \in \mathcal{P}\left(\mathcal{N}_{i}\right) \mid |\mathcal{B}| = k \}$$
(17)

where $\mathcal{P}\left(\mathcal{N}_{i}
ight)$ denotes the set of all subsets of \mathcal{N}_{i} . Furthermore, let

$$\mathcal{N}'_i = \{ j \in [m] \mid \omega_{ij} = 1 \}$$

$$\tag{18}$$

$$\mathcal{N}_i = \{3, 4, 5\}$$

$$\mathcal{S}_{k}^{\mathcal{N}_{i}} = \{ \mathcal{B} \in \mathcal{P}\left(\mathcal{N}_{i}\right) \mid |\mathcal{B}| = k \}$$
(17)

where $\mathcal{P}\left(\mathcal{N}_{i}
ight)$ denotes the set of all subsets of \mathcal{N}_{i} . Furthermore, let

$$\mathcal{N}'_i = \{ j \in [m] \mid \omega_{ij} = 1 \}$$

$$\tag{18}$$

$$\mathcal{N}_i = \{3, 4, 5\}$$

 $\mathcal{N}'_i = \{1, 2\}$

$$\mathcal{S}_{k}^{\mathcal{N}_{i}} = \{ \mathcal{B} \in \mathcal{P}\left(\mathcal{N}_{i}\right) \mid |\mathcal{B}| = k \}$$
(17)

where $\mathcal{P}\left(\mathcal{N}_{i}
ight)$ denotes the set of all subsets of \mathcal{N}_{i} . Furthermore, let

$$\mathcal{N}'_i = \{ j \in [m] \mid \omega_{ij} = 1 \}$$

$$\tag{18}$$

$$\mathcal{N}_{i} = \{3, 4, 5\}$$
$$\mathcal{N}'_{i} = \{1, 2\}$$
$$\mathcal{S}_{1}^{\mathcal{N}_{i}} = \{\{3\}, \{4\}, \{5\}\}$$

$$\mathcal{S}_{k}^{\mathcal{N}_{i}} = \{ \mathcal{B} \in \mathcal{P}\left(\mathcal{N}_{i}\right) \mid |\mathcal{B}| = k \}$$
(17)

where $\mathcal{P}\left(\mathcal{N}_{i}
ight)$ denotes the set of all subsets of \mathcal{N}_{i} . Furthermore, let

$$\mathcal{N}'_i = \{ j \in [m] \mid \omega_{ij} = 1 \}$$

$$\tag{18}$$

$$\mathcal{N}_{i} = \{3, 4, 5\}$$
$$\mathcal{N}'_{i} = \{1, 2\}$$
$$\mathcal{S}_{1}^{\mathcal{N}_{i}} = \{\{3\}, \{4\}, \{5\}\}$$
$$\mathcal{S}_{2}^{\mathcal{N}_{i}} = \{\{3, 4\}, \{3, 5\}, \{4, 5\}\}$$

$$\mathcal{S}_{k}^{\mathcal{N}_{i}} = \{ \mathcal{B} \in \mathcal{P}\left(\mathcal{N}_{i}\right) \mid |\mathcal{B}| = k \}$$
(17)

where $\mathcal{P}\left(\mathcal{N}_{i}
ight)$ denotes the set of all subsets of \mathcal{N}_{i} . Furthermore, let

$$\mathcal{N}'_i = \{ j \in [m] \mid \omega_{ij} = 1 \}$$

$$\tag{18}$$

$$\mathcal{N}_{i} = \{3, 4, 5\}$$
$$\mathcal{N}_{i}' = \{1, 2\}$$
$$\mathcal{S}_{1}^{\mathcal{N}_{i}} = \{\{3\}, \{4\}, \{5\}\}$$
$$\mathcal{S}_{2}^{\mathcal{N}_{i}} = \{\{3, 4\}, \{3, 5\}, \{4, 5\}\}$$
$$\mathcal{S}_{3}^{\mathcal{N}_{i}} = \{\{3, 4, 5\}\}$$

• Using the above notation and a similar strategy, we can rewrite

$$F_{\mathsf{det}} = \prod_{i=1}^{n} \int_{\mathbb{R}^2} \prod_{j=1}^{m} g_j^{\omega_{ij}} (1 - g_j)^{1 - \omega_{ij}} \, d^2 \mathbf{s}$$
(19)

(20)

(21)

æ

• Using the above notation and a similar strategy, we can rewrite

$$F_{\text{det}} = \prod_{i=1}^{n} \int_{\mathbb{R}^2} \prod_{j=1}^{m} g_j^{\omega_{ij}} (1-g_j)^{1-\omega_{ij}} d^2 \mathbf{s}$$
(19)
$$= \prod_{i=1}^{n} \int_{\mathbb{R}^2} \left[\prod_{j \in \mathcal{N}'_i} g_j \right] \left[\prod_{j \in \mathcal{N}_i} (1-g_j) \right] d^2 \mathbf{s}$$
(20)

(21)

æ

э

• Using the above notation and a similar strategy, we can rewrite

$$F_{det} = \prod_{i=1}^{n} \int_{\mathbb{R}^{2}} \prod_{j=1}^{m} g_{j}^{\omega_{ij}} (1 - g_{j})^{1 - \omega_{ij}} d^{2}\mathbf{s}$$
(19)
$$= \prod_{i=1}^{n} \int_{\mathbb{R}^{2}} \left[\prod_{j \in \mathcal{N}'_{i}} g_{j} \right] \left[\prod_{j \in \mathcal{N}_{i}} (1 - g_{j}) \right] d^{2}\mathbf{s}$$
(20)
$$= \prod_{i=1}^{n} (W_{i} + V_{i})$$
(21)

æ

• Using the above notation and a similar strategy, we can rewrite

$$F_{det} = \prod_{i=1}^{n} \int_{\mathbb{R}^2} \prod_{j=1}^{m} g_j^{\omega_{ij}} (1 - g_j)^{1 - \omega_{ij}} d^2 \mathbf{s}$$
(19)
$$= \prod_{i=1}^{n} \int_{\mathbb{R}^2} \left[\prod_{j \in \mathcal{N}'_i} g_j \right] \left[\prod_{j \in \mathcal{N}_i} (1 - g_j) \right] d^2 \mathbf{s}$$
(20)
$$= \prod_{i=1}^{n} (W_i + V_i)$$
(21)

$$=\prod_{i=1}^{N} (W_i + V_i) \tag{21}$$

where

$$W_i = \int_{\mathbb{R}^2} \prod_{j \in \mathcal{N}'_i} g_j \, d^2 \mathbf{s} = \gamma_{\mathcal{N}'_i} \tag{22}$$

(23)

æ

• Using the above notation and a similar strategy, we can rewrite

$$F_{det} = \prod_{i=1}^{n} \int_{\mathbb{R}^{2}} \prod_{j=1}^{m} g_{j}^{\omega_{ij}} (1 - g_{j})^{1 - \omega_{ij}} d^{2}\mathbf{s}$$
(19)

$$=\prod_{i=1}^{n} \int_{\mathbb{R}^2} \left[\prod_{j \in \mathcal{N}'_i} g_j \right] \left[\prod_{j \in \mathcal{N}_i} (1 - g_j) \right] d^2 \mathbf{s}$$
(20)
$$=\prod_{i=1}^{n} (W_i + V_i)$$
(21)

æ

where

$$W_{i} = \int_{\mathbb{R}^{2}} \prod_{j \in \mathcal{N}'_{i}} g_{j} d^{2} \mathbf{s} = \gamma_{\mathcal{N}'_{i}}$$

$$V_{i} = \sum_{k=1}^{|\mathcal{N}_{i}|} \sum_{\mathcal{B} \in \mathcal{S}_{k}^{\mathcal{N}_{i}}} (-1)^{k} \int_{\mathbb{R}^{2}} \prod_{j \in \mathcal{B} \cup \mathcal{N}'_{i}} g_{j} d^{2} \mathbf{s} = \sum_{k=1}^{|\mathcal{N}_{i}|} \sum_{\mathcal{B} \in \mathcal{S}_{k}^{\mathcal{N}_{i}}} (-1)^{k} \gamma_{\mathcal{B} \cup \mathcal{N}'_{i}}$$
(22)
$$(23)$$

Closed-form marginal likelihood

The marginal semi-complete-data likelihood with half-normal detection function,

$$\mathcal{L}^{sc}(\boldsymbol{\theta}; \boldsymbol{\Omega}, \mathbf{X}, n) = \frac{D^{n} \exp\left(-D \cdot F_{\mathsf{esa}}\right)}{n!} \cdot F_{\mathsf{det}_{n}}$$
(24)
$$= \frac{D^{n}}{n!} \exp\left(D \cdot \sum_{k=1}^{m} \sum_{\mathcal{B} \in \mathcal{S}_{k}} (-1)^{k} \gamma_{\mathcal{B}}\right) \cdot \prod_{i=1}^{n} \left(\gamma_{\mathcal{N}_{i}^{\prime}} + \sum_{k=1}^{|\mathcal{N}_{i}|} \sum_{\mathcal{B} \in \mathcal{S}_{k}^{\mathcal{N}_{i}}} (-1)^{k} \gamma_{\mathcal{B} \cup \mathcal{N}_{i}^{\prime}}\right)$$
(25)

where

$$\gamma_{\mathcal{B}} = g_0^{|\mathcal{B}|} \exp\left[\frac{|\mathcal{B}|}{2\sigma^2} \left(\|\mathbf{c}_{\mathcal{B}}\|^2 - \mu_{\mathcal{B}}\right)\right] \frac{2\pi\sigma^2}{|\mathcal{B}|}$$
(26)

and the term $c_{\mathcal{B}}$ denotes the centroid of detectors defined by the set \mathcal{B} and $\mu_{\mathcal{B}}$ denotes the mean squared Euclidean norm of the detector coordinates

20 / 21

Thank you!

æ

э.

< 行