
A computational framework for saddlepoint methods

Godrick Oketch

November 28, 2023

1 / 16

Saddlepoint approximation

Consider a θ-dependent random variable Y whose PDF/PMF f (y ; θ) is unknown.

f̂ (y ; θ) = exp(KY (t̂;θ)−t̂y)√
det(2πK ′′

Y (t̂;θ))
, where

K
′

Y (t̂; θ) = y

Known MGF: MY (t; θ) = E(etY)

Saddlepoint approximation transforms

the cumulant generating function (CGF)

KY (t; θ) = logMY (t; θ)

2 / 16

Saddlepoint approximation

Consider a θ-dependent random variable Y whose PDF/PMF f (y ; θ) is unknown.

f̂ (y ; θ) = exp(KY (t̂;θ)−t̂y)√
det(2πK ′′

Y (t̂;θ))
, where

K
′

Y (t̂; θ) = y

Known MGF: MY (t; θ)

L(θ; y); Not possible

L̂(θ; y) = f̂ (y ; θ) -“saddlepoint likelihood”

Saddlepoint approximation transforms

the cumulant generating function (CGF)

KY (t; θ) = logMY (t; θ)

To estimate θ, using y

3 / 16

Saddlepoint likelihood

To estimate θ, we refer to

log L̂(θ|y) = KY (t̂; θ)− t̂y − d

2
log(2π)− 1

2
log det{K ′′

Y (t̂; θ)},

where t̂ = t̂(θ; y) is the solution of the saddlepoint equation, i.e., K ′
Y (t; θ) = y .

KY

K ′
Y

K ′′
Y

log L̂(θ|y) θMLE
Optimisation

What if Y =
∑N

i=1 X̃i

X̃i ∼ Multinomial(n∗, πi)
N = Binomial(n1, p1) + Binomial(n2, p2) + Binomial(n3, p3)

4 / 16

Saddlepoint likelihood

To estimate θ, we refer to

log L̂(θ|y) = KY (t̂; θ)− t̂y − d

2
log(2π)− 1

2
log det{K ′′

Y (t̂; θ)},

where t̂ = t̂(θ; y) is the solution of the saddlepoint equation, i.e., K ′
Y (t; θ) = y .

KY

K ′
Y

K ′′
Y

log L̂(θ|y) θMLE
Optimisation

What if Y =
∑N

i=1 X̃i

X̃i ∼ Multinomial(n∗, πi)
N = Binomial(n1, p1) + Binomial(n2, p2) + Binomial(n3, p3)

5 / 16

• Consider a random variable Y =
∑n

i=1 Xi , where Xi ’s are i.i.d copies of X .

If we know the CGF of X , we can exploit these operations to obtain the CGF of Y .

• Essentially, we transform {KX (t;φ), K
′
X (t;φ), K

′′
X (t;φ)} to {KY (t; θ), K

′
Y (t; θ),

K ′′
Y (t; θ)}

• The “distributional parameter”, φ is modelled by θ(the “model parameter”).

• As a function, φ = h(θ) - “adaptor”

6 / 16

Building a model CGF -Multivariate Poisson r.v.

We observe vector Y = (Y1, . . . ,Yd) which follow a multivariate Poisson distribution such that

Y1 = X1 + Z0

Y2 = X2 + Z0

...

Yd = Xd + Z0.

(1)

Y =

X1

X2
...
Xd

+

1
1
...
1

Z0

Xi ’s and Z0 are unobservable and independent Poisson random variables with distributional
parameters α and β.

Goal: Estimate θ = (α, β) using the observations - Y .

• We can represent (1) as Y = X + Z , where X = (X1, . . . ,Xd) is a vector of i.i.d Poisson
random variables and Z is a vector with d repeated components of Z0.

• Structurally, Y = X + AZ0, A: a column vector of ones.
7 / 16

Building a model CGF -Multivariate Poisson r.v.

We observe vector Y = (Y1, . . . ,Yd) which follow a multivariate Poisson distribution such that

Y1 = X1 + Z0

Y2 = X2 + Z0

...

Yd = Xd + Z0.

(1) Y =

X1

X2
...
Xd

+

1
1
...
1

Z0

Xi ’s and Z0 are unobservable and independent Poisson random variables with distributional
parameters α and β.

Goal: Estimate θ = (α, β) using the observations - Y .

• We can represent (1) as Y = X + Z , where X = (X1, . . . ,Xd) is a vector of i.i.d Poisson
random variables and Z is a vector with d repeated components of Z0.

• Structurally, Y = X + AZ0, A: a column vector of ones.
8 / 16

Building a model CGF -Multivariate Poisson r.v.

Goal: Estimate θ = (α, β) using Y = (Y1, . . . ,Yd).

{Y = X + Z} = {Y = X + AZ0}; X a vector of i.i.d Poisson(α) and Z0 ∼ Poisson(β)

CGF of X(i.i.d Poisson random variable):

K_X <- PoissonModelCGF(lambda = adaptorUsingIndices(indices = 1))

CGF of Z = A*Z_0

K_Z0 <- PoissonModelCGF(lambda = adaptorUsingIndices(indices = 2))

A <- matrix(1, nrow = d)

K_Z <- linearlyMappedCGF(baseCGF = K_Z0, matrix_A = A)

The CGF of Y

K_Y <- sumOfIndependentCGF(K_X, K_Z)

9 / 16

Building a model CGF -Multivariate Poisson r.v.

Goal: Estimate θ = (α, β) using Y = (Y1, . . . ,Yd).

{Y = X + Z} = {Y = X + AZ0}; X a vector of i.i.d Poisson(α) and Z0 ∼ Poisson(β)

CGF of X(i.i.d Poisson random variable):

K_X <- PoissonModelCGF(lambda = adaptorUsingIndices(indices = 1))

CGF of Z = A*Z_0

K_Z0 <- PoissonModelCGF(lambda = adaptorUsingIndices(indices = 2))

A <- matrix(1, nrow = d)

K_Z <- linearlyMappedCGF(baseCGF = K_Z0, matrix_A = A)

The CGF of Y

K_Y <- sumOfIndependentCGF(K_X, K_Z)

10 / 16

Building a model CGF -Multivariate Poisson r.v.

Goal: Estimate θ = (α, β) using Y = (Y1, . . . ,Yd).

{Y = X + Z} = {Y = X + AZ0}; X a vector of i.i.d Poisson(α) and Z0 ∼ Poisson(β)

CGF of X(i.i.d Poisson random variable):

K_X <- PoissonModelCGF(lambda = adaptorUsingIndices(indices = 1))

CGF of Z = A*Z_0

K_Z0 <- PoissonModelCGF(lambda = adaptorUsingIndices(indices = 2))

A <- matrix(1, nrow = d)

K_Z <- linearlyMappedCGF(baseCGF = K_Z0, matrix_A = A)

The CGF of Y

K_Y <- sumOfIndependentCGF(K_X, K_Z)

11 / 16

find.saddlepoint.MLE() for θ = (α, β)

{Y = X + Z} = {Y = X + AZ0}; X a vector of i.i.d Poisson(α) and Z0 ∼ Poisson(β)
————————————————————————

find.saddlepoint.MLE(observed.data = Y, model.cgf = K_Y,

starting.theta = c(1,1), std.error = TRUE)

K_X <- PoissonModelCGF(lambda = adaptorUsingIndices(indices = 1))

K_Z0 <- PoissonModelCGF(lambda = adaptorUsingIndices(indices = 2))

K_Z <- linearlyMappedCGF(baseCGF = K_Z0, matrix_A = matrix(1, nrow = d))

K_Y <- sumOfIndependentCGF(K_X, K_Z)

12 / 16

Capture-recapture models with latent identities

Y = AX

• Latent identities in such models occur in such a way that X can be modelled but is not
observable, and Y cannot be modelled but is observable.

Example: Two-source (Multimark) modeljjj

jjjj

jjjj

0: Not captured
L: Captured from the left
R: Captured from the right

LRR0 0RRL

} Observable historiesL000 000L0RR0

• There is no way of matching these observed histories to the animals that produced them.
13 / 16

Capture-recapture models with latent identities

Y = AX ; X ∼ Multinomial(N, π); θ = (N, pL, pR)

h <- function(theta) pi

grad.h <- function(theta) {...}

A <- ...

K.X <- MultinomialModelCGF(n = adaptorUsingIndices(indices = 1),

prob.vec = adaptorUsingRFunctions(h = h, grad_h = grad.h))

K.Y <- linearlyMappedCGF(baseCGF = K.X, matrix_A = A)

find.saddlepoint.MLE(observed.data = Y, model.cgf = K.Y,

starting.theta = ...)

14 / 16

Summary

• This framework allows us to easily create and compute MGFs/CGFs and their derivatives.

• We exploit “CGF-compatible” operations as our building blocks: linear mapping
operation, sum of independent r.vs operation, operations involving compound
distributions, e.t.c

• For estimation using the saddlepoint likelihood, the framework provides a streamlined and
intuitive way of building CGFs. (The knowledge of the actual CGF of a observable
random variable is unnecessary to obtain estimates. We can use the framework to directly
build and utilise them.)

• The framework is extensible and allows for the addition of new operations and CGFs.

15 / 16

A different approach - MV Poisson problem

We observe vector Y = (Y1, . . . ,Yd) which follow a multivariate Poisson distribution such that

Y1 = X1 + Z0

Y2 = X2 + Z0

...

Yd = Xd + Z0.

Y =

X1

X2
...
Xd

+

1
1
...
1

Z0

——————————————————————————————————–Y1

Y2

Y3

 =

1 0 0 1
0 1 0 1
0 0 1 1

X1

X2

X3

Z0

CGF of Y will involve a “linear mapping” operation of a “concatenated” CGF.

16 / 16

