A coefficient of determination (R^2) for linear mixed models in one go

Hans-Peter Piepho Biostatistics Unit Institute of Crop Science

University of Hohenheim

Table of contents

R² and adjusted R² for linear models (LM)
The main idea
The LM case
Extension to LMM
Extension to GLMM
Examples

Full model

 $y = X\beta + e$,

where

- y = response vector of length n
- β = fixed effects vector

X = design matrix, and $e \sim N \Big(0, V = I_n \sigma_e^2 \Big) = \text{residual error vector}$

Null model

$$y = 1_n \lambda + e$$

where

 1_n = a vector of *n* ones

 λ = intercept $e \sim N(0, V_0 = I_n \sigma_{e0}^2)$ = residual error vector

The standard procedure

Error sum of squares for **full model**:

$$SS_{error}^{full} = y^T P_{\beta} y$$
 where $P_{\beta} = I_n - X(X^T X)^T X^T$

Error sum of squares for null model:

$$SS_{error}^{null} = y^T P_{\lambda} y$$
 where $P_{\lambda} = I_n - n^{-1} \mathbf{1}_n \mathbf{1}_n^T$

Coefficient of determination (R^2)

$$R^{2} = 1 - \frac{SS_{error}^{full}}{SS_{error}^{null}}$$

Adjusted coefficient of determination (R_{adj}^2)

$$R_{adj}^{2} = 1 - \frac{(n-1)SS_{error}^{full}}{(n-p)SS_{error}^{null}} \quad \text{where} \quad p = rank(X)$$

Coefficient of determination (R^2)

$$R^{2} = 1 - \frac{n^{-1}SS_{error}^{full}}{n^{-1}SS_{error}^{null}} = 1 - \frac{\hat{\sigma}_{e(ML)}^{2}}{\hat{\sigma}_{e0(ML)}^{2}}$$

Adjusted coefficient of determination (R_{adj}^2)

$$R_{adj}^{2} = 1 - \frac{(n-p)^{-1} SS_{error}^{full}}{(n-1)^{-1} SS_{error}^{null}} = 1 - \frac{\hat{\sigma}_{e(REML)}^{2}}{\hat{\sigma}_{e0(REML)}^{2}}$$

What does R^2 estimate?

,

$$\Omega_{eta} = rac{\Delta heta (V, V_0)}{ heta (V_0)}$$

where

 $\theta(V)$ = total variance implied by the variance-covariance structure V

$$\Delta \theta (V, V_0) = \theta (V_0) - \theta (V)$$

= variance explained by effects added in full model relative to null model

For LM

$$\theta(V_0) = \sigma_{e0}^2$$
 ,
 $\theta(V) = \sigma_e^2$, and
 $\Delta \theta(V, V_0) = \sigma_{e0}^2 - \sigma_e^2$ and hence

$$\Omega_{\beta} = \frac{\sigma_{e0}^{2} - \sigma_{e}^{2}}{\sigma_{e0}^{2}} = 1 - \frac{\sigma_{e}^{2}}{\sigma_{e0}^{2}}$$

Extensions of R^2

Generalized linear models (GLM): Zhang (2017)

Linear mixed models (LMM): Edwards et al. (2008), Liu et al. (2008), Demidenko et al. (2012), Schreck & Wiesenfarth (2022)

Generalized linear mixed models (GLMM): Nagakawa and Schielzeth (2013), Jaeger et al. (2017, 2018), Nakagawa et al. (2017), Stoffel et al. (2017), Ives (2019), Piepho (2019), Zhang (2022)

 \Rightarrow No time to review in detail

 \Rightarrow None of these seemed general enough & easy to communicate

Methods in Ecology and Evolution

Methods in Ecology and Evolution 2013, 4, 133–142

doi: 10.1111/j.2041-210x.2012.00261.x

A general and simple method for obtaining *R*² from generalized linear mixed-effects models

Shinichi Nakagawa^{1,2}* and Holger Schielzeth³

¹National Centre for Growth and Development, Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9054, New Zealand; ²Department of Behavioral Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany; and ³Department of Evolutionary Biology, Bielefeld University, Morgenbreede 45, 33615, Bielefeld, Germany

- > 6900 citations and counting on SCOPUS !
- > Two problems:
 - (i) covariance among observations ignored
 - (ii) bias in estimate of variance explained by fixed effects

Data vector

 $y = (y_1, y_2, ..., y_n)^T$ with

$$E(y) = \mu = (\mu_1, \mu_2, ..., \mu_n)^T$$
 and $var(y) = V = \{v_{ij}\}$

Semivariance

$$sv(y_i, y_j) = \frac{1}{2}var(y_i - y_j) = \frac{1}{2}(v_{ii} + v_{jj}) - v_{ij}$$

(Webster & Oliver, 2007)

Average semivariance (ASV)

$$\theta^{ASV}(V) = \frac{2}{n(n-1)} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} sv(y_i, y_j) = \frac{1}{n-1} \operatorname{trace}(VP_{\lambda})$$

where
$$P_{\lambda} = I_n - n^{-1} \mathbf{1}_n \mathbf{1}_n^T$$

This is a discrete version of the double integral given in Webster & Oliver (2007), which integrates the semivariance over a defined spatial area:

4.8 SUPPORT AND KRIGE'S RELATION

Spatial dependence within a finite region has both theoretical and practical consequences, which we now explore.

The variance of $Z(\mathbf{x})$ within a region R of area |R| is the double integral of the variogram:

$$\sigma_R^2 = \overline{\gamma}(R,R) = \frac{1}{|R|^2} \int_R \int_R \gamma(\mathbf{x} - \mathbf{x}') \, \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{x}', \qquad (4.23)$$

where x and x' sweep independently over *R*. In geostatistics this variance is called the *dispersion variance* of Z(x) in *R*. Unless the variogram is

(Webster & Oliver, 2007, Geostatistics for environmental scientists. Wiley, p.61)

- ASV only captures the total variance in the random-effects part.
- Also need to capture the fixed-effects part

To do so, we here use the expected value of $\frac{1}{2}(y_i - y_j)^2$, which may be denoted as **expected semi-squared difference**:

$$essd(y_i, y_j) = \frac{1}{2}E[(y_i - y_j)^2] = ssb(y_i, y_j) + sv(y_i, y_j)$$

where

$$ssb(y_i, y_j) = \frac{1}{2}(\mu_i - \mu_j)^2$$
 is the **semi-squared bias**

Average semi-squared bias (ASSB):

$$\theta^{ASSB}(\mu) = \frac{2}{n(n-1)} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} ssb(y_i, y_j) = \frac{1}{n-1} \operatorname{trace}(\mu^T P_{\lambda} \mu)$$

Average expected semi-squared difference (AESSD):

$$\theta^{AESSD}(V,\mu) = \frac{2}{n(n-1)} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} essd(y_i, y_j) = \theta^{ASSB}(\mu) + \theta^{ASV}(V)$$

The **average expected semi-squared difference**, $\theta^{AESSD}(V, \mu)$, can be related to the sample variance

$$s_y^2 = \frac{1}{n-1} y^T P_\lambda y$$

It follows from results on quadratic forms that

$$E\left(s_{y}^{2}\right) = \theta^{AESSD}\left(V, \mu\right)$$

The candidate model can be written as

 $y = X\beta + e$

where $e \sim N(0, V = I\sigma_e^2)$. The error variance can be unbiasedly estimated by

$$\hat{\sigma}_e^2 = \frac{1}{n-p} y^T P_\beta y ,$$

where
$$p = rank(X)$$
, and $P_{\beta} = I - X(X^T X)^T X^T$.

Average expected semi-squared difference:

$$\theta^{AESSD} \left(V = I \sigma_e^2, \mu = X \beta \right) = \theta^{ASSB} \left(X \beta \right) + \theta^{ASV} \left(I \sigma_e^2 \right)$$

The proposed coefficient of determination:

$$\Omega_{\beta} = \frac{\theta^{ASSB}(X\beta)}{\theta^{ASSB}(X\beta) + \theta^{ASV}(I\sigma_{e}^{2})}$$

We find that
$$heta^{_{ASV}} ig(I \sigma_e^2 ig) = \sigma_e^2$$
 , which is estimated by

$$\hat{\theta}_{LM}^{ASV}(I\sigma_e^2) = \hat{\sigma}_e^2$$

Naïve estimator of $\theta^{ASSB}(X\beta)$:

$$\frac{1}{n-1}\hat{\beta}^T X^T P_{\lambda} X \hat{\beta} \quad \text{with} \quad \hat{\beta} = (X^T X)^T X^T y$$

$$E\left[\frac{1}{n-1}\hat{\beta}^{T}X^{T}P_{\lambda}X\hat{\beta}\right] = \theta^{ASSB}(X\beta) + \frac{1}{n-1}trace\left[X^{T}P_{\lambda}X\operatorname{var}(\hat{\beta})\right]$$

 \Rightarrow unbiased estimator:

$$\hat{\theta}_{LM}^{ASSB}(X\beta) = \frac{1}{n-1}\hat{\beta}^{T}X^{T}P_{\lambda}X\hat{\beta} - \frac{1}{n-1}trace\left[X^{T}P_{\lambda}X\operatorname{var}(\hat{\beta})\right]$$

Putting it all together:

$$\hat{\theta}_{LM}^{ASSB}(X\beta) + \hat{\theta}_{LM}^{ASV}(I\sigma_{e}^{2}) = \frac{1}{n-1}\hat{\beta}^{T}X^{T}P_{\lambda}X\hat{\beta} - \frac{\hat{\sigma}_{e}^{2}}{n-1}(p-1) + \hat{\sigma}_{e}^{2} = \hat{\sigma}_{e0}^{2}$$

i.e., the estimator of the residual variance under the null model \Rightarrow

$$\hat{\Omega}_{\beta} = \frac{\hat{\theta}_{LM}^{ASSB}(X\beta)}{\hat{\theta}_{LM}^{ASSB}(X\beta) + \hat{\theta}_{LM}^{ASV}(I\sigma_{e}^{2})} = 1 - \frac{\hat{\sigma}_{e}^{2}}{\hat{\sigma}_{e0}^{2}}$$

which is identical with the adjusted R^2 for LM (Draper & Smith, 1998)

A LMM can be written as

 $y = X\beta + Zu + e$

with $\operatorname{var}(u) = G$, $\operatorname{var}(e) = R$ and $\operatorname{cov}(u, e) = 0$, such that

$$\operatorname{var}(y) = V = ZGZ^T + R$$

The fixed effects are estimated by

$$\hat{\boldsymbol{\beta}} = \left(\boldsymbol{X}^T \boldsymbol{V}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{V}^{-1} \boldsymbol{y}$$

Average expected semi-squared difference, $\theta^{AESSD}(V,\mu)$:

$$\theta^{AESSD}(V, X\beta) = \theta^{ASSB}(X\beta) + \theta^{ASV}(V)$$

Coefficient of determination:

$$\Omega_{\beta} = \frac{\theta^{ASSB}(X\beta)}{\theta^{ASSB}(X\beta) + \theta^{ASV}(V)}$$

The unbiased estimator of $\theta^{ASSB}(X\beta)$ is

$$\hat{\theta}_{LMM}^{ASSB}(X\beta) = \frac{1}{n-1}\hat{\beta}^{T}X^{T}P_{\lambda}X\hat{\beta} - \frac{1}{n-1}trace\left[X^{T}P_{\lambda}X\operatorname{var}(\hat{\beta})\right]$$

where
$$\operatorname{var}(\hat{\beta}) = (X^T V^{-1} X)^{-1}$$
.

Need to replace V by \hat{V} , its residual maximum likelihood (REML) estimator \Rightarrow consistent

Variance explained jointly by random effects u and residual e:

$$\hat{\theta}_{LMM}^{ASV}(V) = \frac{1}{n-1} trace(P_{\lambda}\hat{V})$$

Consistent estimator of the coefficient of determination for LMM:

$$\hat{\Omega}_{\beta} = \frac{\hat{\theta}_{LMM}^{ASSB}(X\beta)}{\hat{\theta}_{LMM}^{ASSB}(X\beta) + \hat{\theta}_{LMM}^{ASV}(V)}$$

Coefficient of determination for the variance explained by random effects:

$$\Omega_{u} = \frac{\theta^{ASV} (ZGZ^{T})}{\theta^{ASSB} (X\beta) + \theta^{ASV} (V)}$$

This may be motivated by the partition

$$\theta^{ASV}(V) = \frac{1}{n-1} trace(P_{\lambda}V) = \theta^{ASV}(ZGZ^{T}) + \theta^{ASV}(R)$$

The estimator of
$$\, heta^{\scriptscriptstyle ASV}\!\left(\!ZGZ^{\scriptscriptstyle T}
ight)$$
 is simply $\, heta^{\scriptscriptstyle ASV}\!\left(\!Z\hat{G}Z^{\scriptscriptstyle T}
ight)$.

The variance explained by both fixed and random effects:

$$\Omega_{\beta u} = \frac{\theta^{ASSB}(X\beta) + \theta^{ASV}(ZGZ^{T})}{\theta^{ASSB}(X\beta) + \theta^{ASV}(V)}$$

Also, $\theta^{ASV}(V)$ can be partitioned according to the component random effects:

 $Zu = Z_1 u_1 + Z_2 u_2$

with
$$\operatorname{var}(u_1) = G_1$$
, $\operatorname{var}(u_2) = G_2$ and $\operatorname{cov}(u_1, u_2) = 0 \implies$

$$\begin{aligned} \theta^{ASV}(V) &= \frac{1}{n-1} trace(P_{\lambda}V) \\ &= \frac{1}{n-1} trace(P_{\lambda}Z_{1}G_{1}Z_{1}^{T}) + \frac{1}{n-1} trace(P_{\lambda}Z_{2}G_{2}Z_{2}^{T}) + \frac{1}{n-1} trace(P_{\lambda}R) \\ &= \theta^{ASV}(Z_{1}G_{1}Z_{1}^{T}) + \theta^{ASV}(Z_{2}G_{2}Z_{2}^{T}) + \theta^{ASV}(R) \end{aligned}$$

A GLMM has linear predictor

 $\eta = X\beta + Zu + f$

 $\operatorname{var}(f) = R_f$

The residual random effect f associated with the n units in the linear predictor is optional and may be added to account for overdispersion.

The observed data have conditional expectation

$$E(y|\eta) = \mu = g^{-1}(\eta)$$

where g(.) is the link function.

The variance takes the general form

 $\operatorname{var}(y|\mu) = A_{\mu}^{1/2} R A_{\mu}^{1/2}$

 A_{μ} = a diagonal matrix with evaluations of the variance function $var(y_i | \mu_i)$ on the diagonal

R = a correlation matrix or a covariance matrix if overdispersion needs to be modelled (Wolfinger & O'Connell, 1993; Stroup, 2015)

Challenge with GLMMs

- The random model terms occur both on the *linear predictor scale* (via the random effects Zu) and on the *observed scale* (via the conditional distribution of y for given value of the linear predictor η)
- In defining a coefficient of determination, a choice needs to be made as to the scale on which variance is to be assessed
- In either case, the variance occurring on the one scale needs to be projected onto the other scale in order to have a common scale on which to define the coefficient of determination ⇒ I am projecting onto the linear predictor scale

Extending the linear predictor for the projection:

$$\eta_h = X\beta + Zu + f + h$$

 $\operatorname{var}(h) = R_h$

h = auxiliary residual term to take up the projection of the residual from the original scale (Nakagawa & Schielzeth, 2013)

$$V_h = ZGZ^T + R_f + R_h$$

Use the Taylor-series expansion approach of Foulley et al. (1987) to project the residual variance from the original scale onto h on the linear predictor scale:

$$R_h = D_\eta^{-1} A_\mu^{1/2} R A_\mu^{1/2} D_\eta^{-1}$$

where
$$D_{\eta} = diag \left[\partial g^{-1}(\eta) / \partial \eta \right]$$

⇒ Particularly easy to compute when model is fitted using pseudo-likelihood (Wolfinger & O'Connell, 1993)

Table: Values of diagonal elements of D_{η} and A_{μ} for a few examples (m =

sample size of binomial distribution).

Link function	D_η	Distribution	A_{μ}
Logit	$m\mu(1-\mu)$	Binomial	$m\mu(1-\mu)$
Probit [§]	$m \varphi(\eta)$	Binomial	$m\mu(1-\mu)$
Complementary log-log	$m \exp[\eta - \exp(\eta)]$	Binomial	$m\mu(1-\mu)$
Log	μ	Poisson	μ

§ $\varphi(.)$ is the probability density function of the standard normal distribution

Exact results for the binary distribution (binomial distribution with m = 1):

Link function	Implied c.d.f.	Variance of h_i
Logit	standard logistic	$\operatorname{var}(h_i) = \pi^2 / 3$
Probit	standard normal	$\operatorname{var}(h_i) = 1$
Complementary log-log	standard extreme value	$\operatorname{var}(h_i) = \pi^2 / 6$

- Beetle larvae sampled from 12 populations (Nakagawa and Schielzeth, 2013)
- Within each population, larvae obtained from two microhabitats
- Larvae distinguished as male and female
- Sexed pupae were reared in containers, each holding eight animals

There are three responses:

(i) body length (Gaussian distribution)

(ii) frequency of two male colour morphs (binary distribution)

(iii) the number of eggs laid by each female (Poisson distribution)

Linear predictor

Fixed effects: habitat Random effects: population and container

Distribution, link function and unit variance

Morph frequency:

 \Rightarrow binomial, logit link, $\operatorname{var}(h_i) = \pi^2/3$ and $\operatorname{cov}(h_i, h_j) = 0$ $(i \neq j)$

Egg counts:

$$\Rightarrow$$
 Poisson, log link, $var(h_i) = \mu_i^{-1}$ and $cov(h_i, h_j) = 0$ $(i \neq j)$

Table: Coefficients of determination (%) the beetle data in Nakagawa & Schielzeth (2013)

Trait	Variance	Coefficients of determination (%)								
	parameter	App	proach of	this	Pi	epho (201	9)§	%Nakag	gawa &	
	estimation		paper					Schielzet	th (2013)	
	method	Ω_{eta}	Ω_u	$\Omega_{eta u}$	Ω_{eta}	Ω_u	$\Omega_{eta u}$	$R^2_{GLMM(m)}$	$R^2_{GLMM(c)}$	
Body	REML	40.09	33.30	73.39	40.09	33.30	73.39	39.16	74.09	
length										
Egg	Pseudo-	8.72	^{&} 43.45	52.17	5.78	^{&} 44.85	50.63	-	-	
count	likelihood									
Egg	Laplace	9.13	^{&} 41.80	50.93	\$7.21	^{\$,&} 42.68	^{\$} 49.89	9.76	a57.23	
count										
Colour	Laplace	7.46	21.99	29.46	-3.77	24.67	20.89	7.77	31.13	
morph										

Beitler & Landis (1985)

- clinical trial with two treatments (control versus intervention)
- eight clinics, 273 patients
- clinics are regarded as a random sample from a larger target population
- Linear predictor:

fixed effect: treatment

random effects: clinic + clinic.treatment

• binomial count y_i of the number of patients responding favourably out of the

total number of patients m_i allocated to a treatment in a given clinic

- logit, probit and complementary log-log link
- Gaussian quadrature

Patient-level analysis

The rows of the relevant vector and matrices (η , X, Z, R_h , V_h) need to be expanded from the binomial model for grouped data (y_i, m_i) with 16 clinic × treatment combinations, to represent the binary patient-level response y_{ij} .

 \Rightarrow binary inflation

		Binomial link function									
	Log	git	Pro	obit	Complementary log-log						
	Estimate	<u>s.e</u> .	Estimate	<u>s.e</u> .	Estimate	<u>s.e</u> .					
Fixed effects:											
Intercept	-0.4574	0.5529	-0.2638	0.3190	-0.8568	0.4208					
treatment (control)	-0.7460	0.3247	-0.4434	0.1897	-0.4906	0.2100					
Variance components	:										
Clinic	1.9632	1.1973	0.6614	0.3900	1.1293	0.6989					
Clinic × treatment	0.01102	0.1593	0.003433	0.05692	-	-					
Information criteria:											
AIC	82.07		82.31		81.27						
BIC	82.39		82.63		81.51						

Coefficient of determination (%):

		Binomial link function								
	Log	it	Prol	bit	Complementary log-log					
Level:	Group§	Patient	Group§	Patient	Group§	Patient				
Ω_{eta}	4.66	2.23	5.03	2.52	3.44	1.86				
Ω_{u}	71.34	32.76	72.84	34.92	69.21	35.87				
$\Omega_{eta u}$	75.99	34.99	77.87	37.44	72.66	37.74				

§ Group = Clinic × treatment combination

Gilmour et al. (1987)

- deformities in the feet of 2,513 lambs
- scored in three ordered categories, denoted as K1, K2 and K3
- lambs represent 34 sires
- Linear predictor:

random effect: sire

fixed effects: four contrasts denoted as YR (year), B1, B2 and B3 (breeds)

- binomial model with a probit link, merging either K2 & K3 or K1 & K2
- multinomial, cumulative probits (threshold model)

		Binomial	model	Multinomia (proportion	l model nal odds)	
	K1 vs. K	X2 & K3	K1 & K2	vs. K3		
	Estimate	s.e.	Estimate	s.e.	Estimate	s.e.
Fixed effects	:					
Intercept	0.3823	0.04968	-	-	0.3781	0.04907
Intercept 2	-	-	1.7558	0.08054	1.6435	0.05930
YR	0.1118	0.04966	0.3462	0.07912	0.1422	0.04834
B1	0.3719	0.07348	0.6069	0.1396	0.3781	0.07154
B2	0.3066	0.1014	0.3617	0.1146	0.3157	0.09709
B3	-0.05571	0.06683	-0.2222	0.07379	-0.09887	0.06508
Sire variance	: 0.04974	0.01755	0.04160	0.02528	0.04849	0.01673

Coefficient of determination (%):

		Binomial n	nodel		Multinomia (proportion	l model al odds)	
	K1 vs.	K1 vs. K2 & K3		K1 & K2 vs. K3		Sire §,\$	
	Sire ^{\$}	Lamb ^{\$}	Sire ^{\$}	Lamb ^{\$}	<u>K1 vs.</u> K2 & K3	K1 & K2 vs. K3	
Ω_{eta}	50.06	5.54	59.54	20.19	54.19	40.83	6.75
Ω_u	32.72	4.34	9.06	3.09	29.69	22.37	4.18
$\Omega_{eta u}$	82.78	9.88	68.60	23.28	83.89	63.20	10.93

YR	B1	B2	B3	Ω_{eta}	$\Omega_{_{u}}$	$\Omega_{eta u}$	AIC	BIC
-	-	-	-	0.00	11.58	11.58	3904.63	3912.20
+	-	-	-	1.23	9.99	11.21	3902.56	3908.66
-	+	-	-	6.47	8.25	14.72	3897.08	3903.19
-	-	+	-	3.23	10.25	13.49	3903.50	3909.60
-	-	-	+	-0. 54	11.50	10.97	3906.29	3912.39
+	+	-	-	5.25	6.27	11.53	3891.32	3898.95
+	-	+	-	1.19	9.49	10.68	3902.51	3910.14
+	-	-	+	1.89	9.53	11.42	3903.36	3910.99
-	+	+	-	13.57	5.35	18.92	3888.65	3896.28
-	+	-	+	6.45	8.14	14.59	3898.73	3906.36
-	-	+	+	3.45	10.06	13.51	3905.01	3912.64
+	+	+	-	6.26	4.58	10.84	3884.36	3893.51
+	+	-	+	6.10	5.83	11.93	3891.57	3900.73
+	-	+	+	1.70	9.06	10.76	3903.25	3912.41
-	+	+	+	13.60	5.17	18.76	3889.89	3899.05
+	+	+	+	6.75	4.18	10.92	3884.12	3894.81

Single covariate

Simulation scenarios for random-coefficient regression as described in Xu (2003).

$$y_{ij} = \beta_0 + u_{0i} + (\beta_1 + u_{1i})z_{1ij} + e_{ij}$$

$$(i = 1, ..., n; j = 1, ..., n_i)$$
 with $u_{i0} \sim N(0, \tau_0^2)$, $u_{i1} \sim N(0, \tau_1^2)$ and $e_{ij} \sim N(0, \sigma^2)$

The covariate values z_{1ij} were simulated once from a standard normal distribution and this one set of values used in all 1,000 simulation runs for a scenario.

β_1	τ_0	$ au_1$		$n = 50, \ \underline{n_i} = 5$				
			$\hat{\Omega}_{eta}$	$\hat{\Omega}_{u}$	$\hat{\Omega}_{_{eta\!u}}$	$\Omega_{ m eta}$	$\mathbf{\Omega}_{u}$	$\Omega_{ hou}$
0.7	0	0	0.531 (0.036)	0.019 (0.021)	0.551 (0.040)	0.533	0	0.533
	0	0.5	0.417 (0.072)	0.225 (0.057)	0.642 (0.056)	0.419	0.213	0.633
	0	1	0.255 (0.093)	0.525 (0.083)	0.780 (0.045)	0.256	0.521	0.776
	1	0	0.284 (0.042)	0.473 (0.065)	0.757 (0.036)	0.280	0.474	0.754
	1	0.5	0.243 (0.055)	0.539 (0.063)	0.782 (0.035)	0.245	0.540	0.785
	1	1	0.181 (0.072)	0.661 (0.070)	0.843 (0.027)	0.179	0.665	0.844
0.5	1	0	0.167 (0.034)	0.550 (0.062)	0.716 (0.044)	0.166	0.549	0.715
	1	0.5	0.141 (0.048)	0.611 (0.061)	0.752 (0.041)	0.142	0.613	0.756
	1	1	0.097 (0.058)	0.729 (0.060)	0.825 (0.031)	0.100	0.729	0.829

Two covariates

$$y_{ij} = \beta_0 + u_{0i} + (\beta_1 + u_{1i})z_{1ij} + (\beta_2 + u_{2i})z_{2ij} + e_{ij}$$

where $u_{i2} \sim N(0, \tau_2^2)$

β_1	β_2	τ_1	τ_2		$n = 50, n_i = 5$				
				$\hat{\Omega}_{eta}$	$\hat{\Omega}_u$	$\hat{\Omega}_{eta u}$	Ω_{β}	Ω_u	$\Omega_{eta u}$
2	2	2	2	0.375 (0.063)	0.437 (0.061)	0.812 (0.032)	0.378	0.439	0.817
2	1	1	1	0.429 (0.053)	0.246 (0.054)	0.676 (0.047)	0.432	0.250	0.681
1	1	1	1	0.222 (0.054)	0.335 (0.067)	0.557 (0.063)	0.224	0.341	0.565
0.5	1	1	1	0.147 (0.049)	0.367 (0.071)	0.514 (0.068)	0.148	0.374	0.522
1	1	0.5	1	0.246 (0.051)	0.268 (0.065)	0.514 (0.064)	0.248	0.272	0.520
0.5	0.5	1	1	0.066 (0.039)	0.402 (0.075)	0.468 (0.073)	0.067	0.410	0.477
1	1	0.5	0.5	0.271 (0.047)	0.199 (0.060)	0.470 (0.062)	0.272	0.201	0.473
0.5	0.5	0.5	0.5	0.084 (0.036)	0.249 (0.073)	0.334 (0.074)	0.085	0.252	0.337
0.5	0.5	1	0.5	0.073 (0.038)	0.341 (0.074)	0.414 (0.074)	0.075	0.346	0.421

Summary

- Average semivariance (ASV) is a natural metric for total variance
- Average semi-squared bias (ASSB) is a natural extension of ASV that also includes fixed effects
- ASV and ASSB account for covariance among observations
- It is important to remove bias in the estimation of ASSB
- A coefficient of determination based on ASSB coincides with the adjusted R² for LM
- Extension to LMM and GLMM is straightforward
- In GLMM, total variance is assessed on the linear predictor scale
- Simulation shows that estimates of variance explained are accurate

Thanks!

References

Feldmann, M.J., Piepho, H.P., Bridges, W.C., Knapp, S.J. (2021): Average semivariance yields accurate estimates of the fraction of marker-associated genetic variance and heritability in complex trait analyses. *PLoS Genetics* **17**, e1009762.

Feldmann, M.J., Piepho, H.P., Knapp, S.J. (2022): Average semivariance directly yields accurate estimates of genomic variance of complex, quantitative traits. *G3* **12(6)**, jkac080.

Feldmann, M.J., Covarrubias-Pazaran, E., Piepho, H.P. (2023): Complex traits and candidate genes: Estimation of genetic variance components across modes of inheritance. *G3* **13**, jkad148.

Piepho, H.P. (2019): A coefficient of determination (R^2) for generalized linear mixed models. *Biometrical Journal* **61**, 860-872.

Piepho, H.P. (2023): A coefficient of determination (R^2) for linear mixed models in one go. *Biometrical Journal* **65**, 2200290.