A coefficient of determination (R^{2}) for linear mixed models in one go

Table of contents

R^{2} and adjusted R^{2} for linear models (LM)
The main idea
The LM case
Extension to LMM

Extension to GLMM

Examples

R^{2} and adjusted R^{2} for linear models (LM)

Full model

$y=X \beta+e$,
where
$y=$ response vector of length n
$\beta=$ fixed effects vector
$X=$ design matrix, and
$e \sim N\left(0, V=I_{n} \sigma_{e}^{2}\right)=$ residual error vector

R^{2} and adjusted R^{2} for linear models (LM)

Null model

$y=1_{n} \lambda+e$,
where
$1_{n}=$ a vector of n ones
$\lambda=$ intercept
$e \sim N\left(0, V_{0}=I_{n} \sigma_{e 0}^{2}\right)=$ residual error vector

R^{2} and adjusted R^{2} for linear models (LM)

The standard procedure

Error sum of squares for full model:

$$
S S_{\text {error }}^{\text {full }}=y^{T} P_{\beta} y \quad \text { where } \quad P_{\beta}=I_{n}-X\left(X^{T} X\right)^{-} X^{T}
$$

Error sum of squares for null model:

$$
S S_{\text {error }}^{\text {null }}=y^{T} P_{\lambda} y \quad \text { where } \quad P_{\lambda}=I_{n}-n^{-1} 1_{n} 1_{n}^{T}
$$

R^{2} and adjusted R^{2} for linear models (LM)

Coefficient of determination $\left(R^{2}\right)$

$$
R^{2}=1-\frac{S S_{\text {error }}^{\text {full }}}{S S_{\text {error }}^{\text {full }}}
$$

Adjusted coefficient of determination ($R_{a d j}^{2}$)

$$
R_{\text {adj }}^{2}=1-\frac{(n-1) S S_{\text {error }}^{\text {full }}}{(n-p) S S_{\text {elror }}^{\text {null }}} \quad \text { where } \quad p=\operatorname{rank}(X)
$$

R^{2} and adjusted R^{2} for linear models (LM)

Coefficient of determination $\left(R^{2}\right)$

$$
R^{2}=1-\frac{n^{-1} S S_{\text {error }}^{\text {full }}}{n^{-1} S S_{\text {error }}^{\text {null }}}=1-\frac{\hat{\sigma}_{e(M L)}^{2}}{\hat{\sigma}_{e 0(M L)}^{2}}
$$

Adjusted coefficient of determination ($R_{a d j}^{2}$)

$$
R_{\text {adj }}^{2}=1-\frac{(n-p)^{-1} S S_{\text {error }}^{\text {full }}}{(n-1)^{-1} S S_{\text {error }}^{\text {null }}}=1-\frac{\hat{\sigma}_{e(\text { REML })}^{2}}{\hat{\sigma}_{e 0(\text { REML })}^{2}}
$$

R^{2} and adjusted R^{2} for linear models (LM)

What does \boldsymbol{R}^{2} estimate?

$\Omega_{\beta}=\frac{\Delta \theta\left(V, V_{0}\right)}{\theta\left(V_{0}\right)}$,
where
$\theta(V)=$ total variance implied by the variance-covariance structure V
$\Delta \theta\left(V, V_{0}\right)=\theta\left(V_{0}\right)-\theta(V)$
= variance explained by effects added in full model relative to null model

R^{2} and adjusted R^{2} for linear models (LM)

For LM

$$
\theta\left(V_{0}\right)=\sigma_{e 0}^{2},
$$

$$
\theta(V)=\sigma_{e}^{2}, \text { and }
$$

$\Delta \theta\left(V, V_{0}\right)=\sigma_{e 0}^{2}-\sigma_{e}^{2}$ and hence

$$
\Omega_{\beta}=\frac{\sigma_{e 0}^{2}-\sigma_{e}^{2}}{\sigma_{e 0}^{2}}=1-\frac{\sigma_{e}^{2}}{\sigma_{e 0}^{2}}
$$

R^{2} and adjusted R^{2} for linear models (LM)

Extensions of $\boldsymbol{R}^{\mathbf{2}}$

Generalized linear models (GLM): Zhang (2017)

Linear mixed models (LMM): Edwards et al. (2008), Liu et al. (2008),
Demidenko et al. (2012), Schreck \& Wiesenfarth (2022)

Generalized linear mixed models (GLMM): Nagakawa and Schielzeth (2013),
Jaeger et al. (2017, 2018), Nakagawa et al. (2017),
Stoffel et al. (2017), Ives (2019), Piepho (2019), Zhang (2022)
\Rightarrow No time to review in detail
\Rightarrow None of these seemed general enough \& easy to communicate

R^{2} and adjusted R^{2} for linear models (LM)

Methods in Ecology and Evolution

A general and simple method for obtaining R^{2} from generalized linear mixed-effects models

Shinichi Nakagawa ${ }^{1,2_{*}}$ and Holger Schielzeth ${ }^{3}$
${ }^{1}$ National Centre for Growth and Development, Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9054, New Zealand; ${ }^{2}$ Department of Behavioral Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany; and ${ }^{3}$ Department of Evolutionary Biology, Bielefeld University, Morgenbreede 45, 33615, Bielefeld, Germany

> 6900 citations and counting on SCOPUS!
> Two problems:
(i) covariance among observations ignored
(ii) bias in estimate of variance explained by fixed effects

The main idea

Data vector

$$
y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T} \text { with }
$$

$$
E(y)=\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)^{T} \text { and } \operatorname{var}(y)=V=\left\{v_{i j}\right\}
$$

Semivariance

$$
s v\left(y_{i}, y_{j}\right)=\frac{1}{2} \operatorname{var}\left(y_{i}-y_{j}\right)=\frac{1}{2}\left(v_{i i}+v_{i j}\right)-v_{i j}
$$

The main idea

Average semivariance (ASV)

$$
\theta^{A S V}(V)=\frac{2}{n(n-1)} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} s v\left(y_{i}, y_{j}\right)=\frac{1}{n-1} \operatorname{trace}\left(V P_{\lambda}\right)
$$

where $P_{\lambda}=I_{n}-n^{-1} 1_{n} 1_{n}^{T}$

This is a discrete version of the double integral given in Webster \& Oliver (2007), which integrates the semivariance over a defined spatial area:

The main idea

4.8 SUPPORT AND KRIGE'S RELATION

Spatial dependence within a finite region has both theoretical and practical consequences, which we now explore.

The variance of $Z(\mathbf{x})$ within a region R of area $|R|$ is the double integral of the variogram:

$$
\begin{equation*}
\sigma_{R}^{2}=\bar{\gamma}(R, R)=\frac{1}{|R|^{2}} \int_{R} \int_{R} \gamma\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \mathrm{d} \mathbf{x} \mathrm{~d} \mathbf{x}^{\prime}, \tag{4.23}
\end{equation*}
$$

where \mathbf{x} and \mathbf{x}^{\prime} sweep independently over R. In geostatistics this variance is called the dispersion variance of $Z(\mathbf{x})$ in R. Unless the variogram is
(Webster \& Oliver, 2007, Geostatistics for environmental scientists. Wiley, p.61)

The main idea

- ASV only captures the total variance in the random-effects part.
- Also need to capture the fixed-effects part

To do so, we here use the expected value of $\frac{1}{2}\left(y_{i}-y_{j}\right)^{2}$, which may be denoted as expected semi-squared difference:
$\operatorname{essd}\left(y_{i}, y_{j}\right)=\frac{1}{2} E\left[\left(y_{i}-y_{j}\right)^{2}\right]=\operatorname{ssb}\left(y_{i}, y_{j}\right)+\operatorname{sv}\left(y_{i}, y_{j}\right)$
where
$\operatorname{ssb}\left(y_{i}, y_{j}\right)=\frac{1}{2}\left(\mu_{i}-\mu_{j}\right)^{2}$ is the semi-squared bias

The main idea

Average semi-squared bias (ASSB):

$$
\theta^{A S S B}(\mu)=\frac{2}{n(n-1)} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} s s b\left(y_{i}, y_{j}\right)=\frac{1}{n-1} \operatorname{trace}\left(\mu^{T} P_{\lambda} \mu\right)
$$

Average expected semi-squared difference (AESSD):

$$
\theta^{A E S S D}(V, \mu)=\frac{2}{n(n-1)} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{essd}\left(y_{i}, y_{j}\right)=\theta^{A S S B}(\mu)+\theta^{A S V}(V)
$$

The main idea

The average expected semi-squared difference, $\theta^{A E S S D}(V, \mu)$, can be related to the sample variance

$$
s_{y}^{2}=\frac{1}{n-1} y^{T} P_{\lambda} y
$$

It follows from results on quadratic forms that

$$
E\left(s_{y}^{2}\right)=\theta^{A E S S D}(V, \mu)
$$

The LM case

The candidate model can be written as
$y=X \beta+e$
where $e \sim N\left(0, V=I \sigma_{e}^{2}\right)$. The error variance can be unbiasedly estimated by
$\hat{\sigma}_{e}^{2}=\frac{1}{n-p} y^{T} P_{\beta} y$,
where $p=\operatorname{rank}(X)$, and $P_{\beta}=I-X\left(X^{T} X\right)^{-} X^{T}$.

The LM case

Average expected semi-squared difference:

$$
\theta^{A E S S D}\left(V=I \sigma_{e}^{2}, \mu=X \beta\right)=\theta^{A S S B}(X \beta)+\theta^{A S V}\left(I \sigma_{e}^{2}\right)
$$

The proposed coefficient of determination:

$$
\Omega_{\beta}=\frac{\theta^{A S S B}(X \beta)}{\theta^{A S S B}(X \beta)+\theta^{A S V}\left(I \sigma_{e}^{2}\right)}
$$

We find that $\theta^{A S V}\left(I \sigma_{e}^{2}\right)=\sigma_{e}^{2}$, which is estimated by
$\hat{\theta}_{L M}^{A S V}\left(I \sigma_{e}^{2}\right)=\hat{\sigma}_{e}^{2}$

The LM case

Naïve estimator of $\theta^{A S S B}(X \beta)$:

$$
\begin{aligned}
& \frac{1}{n-1} \hat{\beta}^{T} X^{T} P_{\lambda} X \hat{\beta} \quad \text { with } \quad \hat{\beta}=\left(X^{T} X\right)^{-} X^{T} y \\
& E\left[\frac{1}{n-1} \hat{\beta}^{T} X^{T} P_{\lambda} X \hat{\beta}\right]=\theta^{A S S B}(X \beta)+\frac{1}{n-1} \operatorname{trace}\left[X^{T} P_{\lambda} X \operatorname{var}(\hat{\beta})\right]
\end{aligned}
$$

\Rightarrow unbiased estimator:

$$
\hat{\theta}_{L M}^{A S S B}(X \beta)=\frac{1}{n-1} \hat{\beta}^{T} X^{T} P_{\lambda} X \hat{\beta}-\frac{1}{n-1} \operatorname{trace}\left[X^{T} P_{\lambda} X \operatorname{var}(\hat{\beta})\right]
$$

The LM case

Putting it all together:

$$
\hat{\theta}_{L M}^{A S S B}(X \beta)+\hat{\theta}_{L M}^{A S V}\left(I \sigma_{e}^{2}\right)=\frac{1}{n-1} \hat{\beta}^{T} X^{T} P_{\lambda} X \hat{\beta}-\frac{\hat{\sigma}_{e}^{2}}{n-1}(p-1)+\hat{\sigma}_{e}^{2}=\hat{\sigma}_{e 0}^{2}
$$

i.e., the estimator of the residual variance under the null model \Rightarrow

$$
\hat{\Omega}_{\beta}=\frac{\hat{\theta}_{L M}^{A S S B}(X \beta)}{\hat{\theta}_{L M}^{A S S B}(X \beta)+\hat{\theta}_{L M}^{A S V}\left(I \sigma_{e}^{2}\right)}=1-\frac{\hat{\sigma}_{e}^{2}}{\hat{\sigma}_{e 0}^{2}}
$$

which is identical with the adjusted R^{2} for LM (Draper \& Smith, 1998)

Extension to linear mixed models (LMM)

A LMM can be written as
$y=X \beta+Z u+e$
with $\operatorname{var}(u)=G, \operatorname{var}(e)=R$ and $\operatorname{cov}(u, e)=0$, such that

$$
\operatorname{var}(y)=V=Z G Z^{T}+R
$$

The fixed effects are estimated by
$\hat{\beta}=\left(X^{T} V^{-1} X\right)^{-} X^{T} V^{-1} y$

Extension to linear mixed models (LMM)

Average expected semi-squared difference, $\theta^{A E S S D}(V, \mu)$:

$$
\theta^{A E S S D}(V, X \beta)=\theta^{A S S B}(X \beta)+\theta^{A S V}(V)
$$

Coefficient of determination:

$$
\Omega_{\beta}=\frac{\theta^{A S S B}(X \beta)}{\theta^{A S S B}(X \beta)+\theta^{A S V}(V)}
$$

Extension to linear mixed models (LMM)

The unbiased estimator of $\theta^{A S S B}(X \beta)$ is
$\hat{\theta}_{L M M}^{\text {ASSB }}(X \beta)=\frac{1}{n-1} \hat{\beta}^{T} X^{T} P_{\lambda} X \hat{\beta}-\frac{1}{n-1} \operatorname{trace}\left[X^{T} P_{\lambda} X \operatorname{var}(\hat{\beta})\right]$
where $\operatorname{var}(\hat{\beta})=\left(X^{T} V^{-1} X\right)^{-}$.

Need to replace V by \hat{V}, its residual maximum likelihood (REML) estimator
\Rightarrow consistent

Extension to linear mixed models (LMM)

Variance explained jointly by random effects u and residual e :

$$
\hat{\theta}_{L M M}^{A S V}(V)=\frac{1}{n-1} \operatorname{trace}\left(P_{\lambda} \hat{V}\right)
$$

Consistent estimator of the coefficient of determination for LMM:

$$
\hat{\Omega}_{\beta}=\frac{\hat{\theta}_{L M M}^{A S S B}(X \beta)}{\hat{\theta}_{L M M}^{A S S B}(X \beta)+\hat{\theta}_{L M M}^{A S V}(V)}
$$

Extension to linear mixed models (LMM)

Coefficient of determination for the variance explained by random effects:

$$
\Omega_{u}=\frac{\theta^{A S V}\left(Z G Z^{T}\right)}{\theta^{A S S B}(X \beta)+\theta^{A S V}(V)}
$$

This may be motivated by the partition

$$
\theta^{A S V}(V)=\frac{1}{n-1} \operatorname{trace}\left(P_{\lambda} V\right)=\theta^{A S V}\left(Z G Z^{T}\right)+\theta^{A S V}(R)
$$

The estimator of $\theta^{A S V}\left(Z G Z^{T}\right)$ is simply $\theta^{A S V}\left(Z \hat{G} Z^{T}\right)$.

Extension to linear mixed models (LMM)

The variance explained by both fixed and random effects:

$$
\Omega_{\beta u}=\frac{\theta^{A S S B}(X \beta)+\theta^{A S V}\left(Z G Z^{T}\right)}{\theta^{A S S B}(X \beta)+\theta^{A S V}(V)}
$$

Extension to linear mixed models (LMM)

Also, $\theta^{A S V}(V)$ can be partitioned according to the component random effects:

$$
Z u=Z_{1} u_{1}+Z_{2} u_{2}
$$

with $\operatorname{var}\left(u_{1}\right)=G_{1}, \operatorname{var}\left(u_{2}\right)=G_{2}$ and $\operatorname{cov}\left(u_{1}, u_{2}\right)=0 \Rightarrow$

$$
\begin{aligned}
\theta^{A S V}(V) & =\frac{1}{n-1} \operatorname{trace}\left(P_{\lambda} V\right) \\
& =\frac{1}{n-1} \operatorname{trace}\left(P_{\lambda} Z_{1} G_{1} Z_{1}^{T}\right)+\frac{1}{n-1} \operatorname{trace}\left(P_{\lambda} Z_{2} G_{2} Z_{2}^{T}\right)+\frac{1}{n-1} \operatorname{trace}\left(P_{\lambda} R\right) \\
& =\theta^{A S V}\left(Z_{1} G_{1} Z_{1}^{T}\right)+\theta^{A S V}\left(Z_{2} G_{2} Z_{2}^{T}\right)+\theta^{A S V}(R)
\end{aligned}
$$

Extension to generalized linear mixed models (GLMM)

A GLMM has linear predictor

$$
\begin{aligned}
& \eta=X \beta+Z u+f \\
& \operatorname{var}(f)=R_{f}
\end{aligned}
$$

The residual random effect f associated with the n units in the linear predictor is optional and may be added to account for overdispersion.

Extension to generalized linear mixed models (GLMM)

The observed data have conditional expectation

$$
E(y \mid \eta)=\mu=g^{-1}(\eta)
$$

where $g($.$) is the link function.$

Extension to generalized linear mixed models (GLMM)

The variance takes the general form
$\operatorname{var}(y \mid \mu)=A_{\mu}^{1 / 2} R A_{\mu}^{1 / 2}$
$A_{\mu}=$ a diagonal matrix with evaluations of the variance function $\operatorname{var}\left(y_{i} \mid \mu_{i}\right)$ on the diagonal
$R=$ a correlation matrix or a covariance matrix if overdispersion needs to be modelled (Wolfinger \& O'Connell, 1993; Stroup, 2015)

Extension to generalized linear mixed models (GLMM)

Challenge with GLMMs

- The random model terms occur both on the linear predictor scale (via the random effects $Z u$) and on the observed scale (via the conditional distribution of y for given value of the linear predictor η)
- In defining a coefficient of determination, a choice needs to be made as to the scale on which variance is to be assessed
- In either case, the variance occurring on the one scale needs to be projected onto the other scale in order to have a common scale on which to define the coefficient of determination \Rightarrow I am projecting onto the linear predictor scale

Extension to generalized linear mixed models (GLMM)

Extending the linear predictor for the projection:

$$
\eta_{h}=X \beta+Z u+f+h
$$

$\operatorname{var}(h)=R_{h}$
$h=$ auxiliary residual term to take up the projection of the residual from the original scale (Nakagawa \& Schielzeth, 2013)
$V_{h}=Z G Z^{T}+R_{f}+R_{h}$

Extension to generalized linear mixed models (GLMM)

Use the Taylor-series expansion approach of Foulley et al. (1987) to project the residual variance from the original scale onto h on the linear predictor scale:
$R_{h}=D_{\eta}^{-1} A_{\mu}^{1 / 2} R A_{\mu}^{1 / 2} D_{\eta}^{-1}$
where $D_{\eta}=\operatorname{diag}\left[\partial g^{-1}(\eta) / \partial \eta\right]$
\Rightarrow Particularly easy to compute when model is fitted using pseudo-likelihood (Wolfinger \& O'Connell, 1993)

Extension to generalized linear mixed models (GLMM)

Table: Values of diagonal elements of D_{η} and A_{μ} for a few examples ($m=$ sample size of binomial distribution).

Link function	D_{η}	Distribution	A_{μ}
Logit	$m \mu(1-\mu)$	Binomial	$m \mu(1-\mu)$
Probit §	$m \varphi(\eta)$	Binomial	$m \mu(1-\mu)$
Complementary log-log	$m \exp [\eta-\exp (\eta)]$	Binomial	$m \mu(1-\mu)$
Log	μ	Poisson	μ

$\S \varphi($.$) is the probability density function of the standard normal distribution$

Extension to generalized linear mixed models (GLMM)

Exact results for the binary distribution (binomial distribution with $m=1$):

Link function	Implied c.d.f.	Variance of h_{i}
Logit	standard logistic	$\operatorname{var}\left(h_{i}\right)=\pi^{2} / 3$
Probit	standard normal	$\operatorname{var}\left(h_{i}\right)=1$
Complementary log-log	standard extreme value	$\operatorname{var}\left(h_{i}\right)=\pi^{2} / 6$

Example 1

- Beetle larvae sampled from 12 populations (Nakagawa and Schielzeth, 2013)
- Within each population, larvae obtained from two microhabitats
- Larvae distinguished as male and female
- Sexed pupae were reared in containers, each holding eight animals

There are three responses:
(i) body length (Gaussian distribution)
(ii) frequency of two male colour morphs (binary distribution)
(iii) the number of eggs laid by each female (Poisson distribution)

Example 1

Linear predictor

Fixed effects: habitat
Random effects: population and container

Distribution, link function and unit variance

Morph frequency:
\Rightarrow binomial, logit link, $\operatorname{var}\left(h_{i}\right)=\pi^{2} / 3$ and $\operatorname{cov}\left(h_{i}, h_{j}\right)=0(i \neq j)$
Egg counts:
\Rightarrow Poisson, log link, $\operatorname{var}\left(h_{i}\right)=\mu_{i}^{-1}$ and $\operatorname{cov}\left(h_{i}, h_{j}\right)=0(i \neq j)$

Example 1

Table: Coefficients of determination (\%) the beetle data in Nakagawa \& Schielzeth (2013)

Trait	Variance parameter estimation method	Coefficients of determination (\%)							
		Approach of this paper			Piepho (2019) ${ }^{\text {§ }}$			\%Nakagawa \& Schielzeth (2013)	
		Ω_{β}	Ω_{u}	$\Omega_{\beta u}$	Ω_{β}	Ω_{u}	$\Omega_{\beta u}$	$R_{\text {GLMM }(m)}^{2}$	$R_{G L M M(c)}^{2}$
Body length	REML	40.09	33.30	73.39	40.09	33.30	73.39	39.16	74.09
Egg count	Pseudolikelihood	8.72	\& 43.45	52.17	5.78	${ }^{\text {\& }} 44.85$	50.63		
Egg count	Laplace	9.13	${ }^{\text {\& }} 41.80$	50.93	\$7.21	s, ${ }^{8} 42.68$	s 49.89	9.76	${ }^{2} 57.23$
Colour morph	Laplace	7.46	21.99	29.46	-3.77	24.67	20.89	7.77	31.13

Example 2

Beitler \& Landis (1985)

- clinical trial with two treatments (control versus intervention)
- eight clinics, 273 patients
- clinics are regarded as a random sample from a larger target population
- Linear predictor:
fixed effect: treatment
random effects: clinic + clinic.treatment
- binomial count y_{i} of the number of patients responding favourably out of the
total number of patients m_{i} allocated to a treatment in a given clinic
- logit, probit and complementary log-log link
- Gaussian quadrature

Example 2

Patient-level analysis

The rows of the relevant vector and matrices $\left(\eta, X, Z, R_{h}, V_{h}\right)$ need to be expanded from the binomial model for grouped data $\left(y_{i}, m_{i}\right)$ with 16 clinic \times treatment combinations, to represent the binary patient-level response $y_{i j}$.
\Rightarrow binary inflation

Example 2

Binomial link function

Logit		Probit		Complementary log-log	
Estimate	s.e.	Estimate	s.e.	Estimate	s.e.

Fixed effects:					
Intercept	-0.4574	0.5529	-0.2638	0.3190	-0.8568
treatment (control)	-0.7460	0.3247	-0.4434	0.1897	-0.4906
Variance components:	,				
Clinic	1.9632	1.1973	0.6614	0.3900	1.1293
Clinic \times treatment	0.01102	0.1593	0.003433	0.05692	-
Information criteria:					81.27
	82.07		82.31	81.51	

Example 2

Coefficient of determination (\%):
Binomial link function

Level:	Logit		Probit		Complementary log-log	
	Group§	Patient	Group§	Patient	Group§	Patient
Ω_{β}	4.66	2.23	5.03	2.52	3.44	1.86
Ω_{u}	71.34	32.76	72.84	34.92	69.21	35.87
$\Omega_{\beta u}$	75.99	34.99	77.87	37.44	72.66	37.74

Example 3

Gilmour et al. (1987)

- deformities in the feet of 2,513 lambs
- scored in three ordered categories, denoted as K1, K2 and K3
- lambs represent 34 sires
- Linear predictor:
random effect: sire
fixed effects: four contrasts denoted as YR (year), B1, B2 and B3 (breeds)
- binomial model with a probit link, merging either K2 \& K3 or K1 \& K2
- multinomial, cumulative probits (threshold model)

Example 3

Example 3

Coefficient of determination (\%):

	Binomial model				Multinomial model (proportional odds)		
	K1 vs. K2 \& K3		K1 \& K2 vs. K3		Sire $\S, \$$		Lamb ${ }^{\text {S }}$
	Sire ${ }^{\text {® }}$	Lamb ${ }^{\text {® }}$	Sire ${ }^{\text {S }}$	Lamb ${ }^{\text {§ }}$	$\begin{gathered} \text { K1 vs. } \\ \text { K2 \& K3 } \end{gathered}$	$\begin{array}{r} \mathrm{K} 1 \& \mathrm{~K} 2 \\ \text { vs. K3 } \end{array}$	
Ω_{β}	50.06	5.54	59.54	20.19	54.19	40.83	6.75
Ω_{u}	32.72	4.34	9.06	3.09	29.69	22.37	4.18
$\Omega_{\beta u}$	82.78	9.88	68.60	23.28	83.89	63.20	10.93

Example 3

YR	B 1	B 2	B 3	Ω_{β}	Ω_{u}	$\Omega_{\beta u}$	AIC	BIC
-	-	-	-	0.00	11.58	11.58	3904.63	3912.20
+	-	-	-	9.99	11.21	3902.56	3908.66	
-	+	-	-	6.47	8.25	14.72	3897.08	3903.19
-	-	+	-	3.23	10.25	13.49	3903.50	3909.60
-	-	-	+	-0.54	11.50	10.97	3906.29	3912.39
+	+	-	-	5.25	6.27	11.53	3891.32	3898.95
+	-	+	-	9.19	1.49	10.68	3902.51	3910.14
+	-	-	+	9.53	11.42	3903.36	3910.99	
-	+	+	-	13.57	5.35	18.92	3888.65	3896.28
-	+	-	+	6.45	8.14	14.59	3898.73	3906.36
-	-	+	+	3.45	10.06	13.51	3905.01	3912.64
+	+	+	-	6.26	4.58	10.84	3884.36	3893.51
+	+	-	+	6.10	5.83	11.93	3891.57	3900.73
+	-	+	+	1.70	9.06	10.76	3903.25	3912.41
-	+	+	+	13.60	5.17	18.76	3889.89	3899.05
+	+	+	+	6.75	4.18	10.92	3884.12	3894.81

Simulation

Single covariate

Simulation scenarios for random-coefficient regression as described in Xu (2003).

$$
\begin{aligned}
& y_{i j}=\beta_{0}+u_{0 i}+\left(\beta_{1}+u_{1 i}\right) z_{1 i j}+e_{i j} \\
& \left(i=1, \ldots, n ; j=1, \ldots, n_{i}\right) \text { with } u_{i 0} \sim N\left(0, \tau_{0}^{2}\right), u_{i 1} \sim N\left(0, \tau_{1}^{2}\right) \text { and } e_{i j} \sim N\left(0, \sigma^{2}\right)
\end{aligned}
$$

The covariate values $z_{1 i j}$ were simulated once from a standard normal distribution and this one set of values used in all 1,000 simulation runs for a scenario.

Simulation

β_{1}	τ_{0}	τ_{1}		$n=50, n_{i}=5$				
			$\hat{\Omega}_{\beta}$	$\hat{\Omega}_{u}$	$\hat{\Omega}_{\beta u}$	Ω_{β}	Ω_{u}	$\Omega_{\beta u}$
0.7	0	0	$0.531(0.036)$	$0.019(0.021)$	$0.551(0.040)$	0.533	0	0.533
	0	0.5	$0.417(0.072)$	$0.225(0.057)$	$0.642(0.056)$	0.419	0.213	0.633
	0	1	$0.255(0.093)$	$0.525(0.083)$	$0.780(0.045)$	0.256	0.521	0.776
	1	0	$0.284(0.042)$	$0.473(0.065)$	$0.757(0.036)$	0.280	0.474	0.754
	1	0.5	$0.243(0.055)$	$0.539(0.063)$	$0.782(0.035)$	0.245	0.540	0.785
	1	1	$0.181(0.072)$	$0.661(0.070)$	$0.843(0.027)$	0.179	0.665	0.844
0.5	1	0	$0.167(0.034)$	$0.550(0.062)$	$0.716(0.044)$	0.166	0.549	0.715
	1	0.5	$0.141(0.048)$	$0.611(0.061)$	$0.752(0.041)$	0.142	0.613	0.756
	1	1	$0.097(0.058)$	$0.729(0.060)$	$0.825(0.031)$	0.100	0.729	0.829

Simulation

Two covariates

$$
y_{i j}=\beta_{0}+u_{0 i}+\left(\beta_{1}+u_{1 i}\right) z_{1 i j}+\left(\beta_{2}+u_{2 i}\right) z_{2 i j}+e_{i j}
$$

where $u_{i 2} \sim N\left(0, \tau_{2}^{2}\right)$

Simulation

β_{1}	β_{2}	τ_{1}	τ_{2}		$n=50, n_{i}=5$				
				$\hat{\Omega}_{\beta}$	$\hat{\Omega}_{u}$	$\hat{\Omega}_{\beta u}$	Ω_{β}	Ω_{u}	$\Omega_{\beta u}$
2	2	2	2	$0.375(0.063)$	$0.437(0.061)$	$0.812(0.032)$	0.378	0.439	0.817
2	1	1	1	$0.429(0.053)$	$0.246(0.054)$	$0.676(0.047)$	0.432	0.250	0.681
1	1	1	1	$0.222(0.054)$	$0.335(0.067)$	$0.557(0.063)$	0.224	0.341	0.565
0.5	1	1	1	$0.147(0.049)$	$0.367(0.071)$	$0.514(0.068)$	0.148	0.374	0.522
1	1	0.5	1	$0.246(0.051)$	$0.268(0.065)$	$0.514(0.064)$	0.248	0.272	0.520
0.5	0.5	1	1	$0.066(0.039)$	$0.402(0.075)$	$0.468(0.073)$	0.067	0.410	0.477
1	1	0.5	0.5	$0.271(0.047)$	$0.199(0.060)$	$0.470(0.062)$	0.272	0.201	0.473
0.5	0.5	0.5	0.5	$0.084(0.036)$	$0.249(0.073)$	$0.334(0.074)$	0.085	0.252	0.337
0.5	0.5	1	0.5	$0.073(0.038)$	$0.341(0.074)$	$0.414(0.074)$	0.075	0.346	0.421

Summary

- Average semivariance (ASV) is a natural metric for total variance
- Average semi-squared bias (ASSB) is a natural extension of ASV that also includes fixed effects
- ASV and ASSB account for covariance among observations
- It is important to remove bias in the estimation of ASSB
- A coefficient of determination based on ASSB coincides with the adjusted R^{2} for LM
- Extension to LMM and GLMM is straightforward
- In GLMM, total variance is assessed on the linear predictor scale
- Simulation shows that estimates of variance explained are accurate

Thanks!

References

Feldmann, M.J., Piepho, H.P., Bridges, W.C., Knapp, S.J. (2021): Average semivariance yields accurate estimates of the fraction of marker-associated genetic variance and heritability in complex trait analyses. PLoS Genetics 17, e1009762.

Feldmann, M.J., Piepho, H.P., Knapp, S.J. (2022): Average semivariance directly yields accurate estimates of genomic variance of complex, quantitative traits. G3 12(6), jkac080.

Feldmann, M.J., Covarrubias-Pazaran, E., Piepho, H.P. (2023): Complex traits and candidate genes: Estimation of genetic variance components across modes of inheritance. G3 13, jkad148.

Piepho, H.P. (2019): A coefficient of determination $\left(R^{2}\right)$ for generalized linear mixed models. Biometrical Journal 61, 860-872.

Piepho, H.P. (2023): A coefficient of determination $\left(R^{2}\right)$ for linear mixed models in one go. Biometrical Journal 65, 2200290.

